CHAPTER 9

Connected Spaces

9.1. Connected and disconnected topological spaces

Definition 9.1. A topological space X is said to be connected if any continuous map $f: X \rightarrow$ $\{0,1\}$ is constant. Here $\{0,1\} \subset \mathbf{R}$ is equipped with the induced (discrete) topology.

A space which is not connected is called disconnected.
If a topological space X is homeomorphic to a connected topological space Y then X is connected as well. This directly follows from the definition.

Lemma 9.2. The following conditions are equivalent:
(a) X is connected;
(b) There are no continuous surjective maps $f: X \rightarrow\{0,1\}$;
(c) Any subset $U \subset X$ which is both closed and open is either $U=\emptyset$ or $U=X$.

Proof. Conditions (a) and (b) are clearly equivalent. If $f: X \rightarrow\{0,1\}$ is a continuous surjective map then $f^{-1}(0)=U \subset X$ is a closed and open subset distinct from \emptyset, X, i.e. (b) implies (c). Conversely, if $U \subset X$ is a closed and open subset distinct from \emptyset, X then the map $f: X \rightarrow\{0,1\}$ with $f(U) \equiv 0$ and $f(X-U) \equiv 1$ is continuous and surjective.

Lemma 9.3. The intervals $(a, b),(a, b],[a, b),[a, b]$ are connected.
Proof. Any continuous map $f:(a, b) \rightarrow\{0,1\}$ is constant as follows from the Mean Value Theorem from the course of Calculus. Similarly for all other intervals.

Lemma 9.4. If $X=A \cup B$ where $A \cap B \neq \emptyset$ and A and B are connected then X is connected.
Proof. Let $f: X \rightarrow\{0,1\}$ be continuous. Then the restrictions $\left.f\right|_{A}$ and $\left.f\right|_{B}$ are constant, and, since $A \cap B \neq \emptyset$, we see that f is constant.

Theorem 9.5. Let $A \subset X$ be a connected subspace. If $A \subset B \subset \bar{A}$ then B is also connected.
Proof. Let $f: B \rightarrow\{0,1\}$ be a continuous map. Then $\left.f\right|_{A}$ is constant. Let's assume that $\left.f\right|_{A} \equiv 0$. Then $U=f^{-1}(0) \subset B$ is a closed subset containing A and hence $U=B$, i.e. $f \equiv 0$.

As a special case of Theorem 9.5 we obtain:
Corollary 9.6. If a subset A of a topological space X is connected then its closure $\bar{A} \subset X$ is connected as well.

Example 9.7. The following spaces are disconnected:
(1) $\{0,1\}$ is disconnected;
(2) $\mathbf{R}-\{0\}$ is disconnected;
(3) \mathbb{Q} is disconnected;
(4) The Cantor set C is disconnected.

Next we define the notion of a connected component.
Let X be a topological space. We may introduce an equivalence relation on X by declaring points $x, y \in X$ to be equivalent $x \sim y$ if there exists a connected subset $A \subset X$ containing both x and y. This relation is clearly symmetric and reflexive. To show that it is transitive, assume that $x \sim y$ and $y \sim z$. Then $x, y \in A$ and $y, z \in B$ where $A, B \subset X$ are connected subsets. Then $C=A \cup B$ is connected (by Lemma 9.4) and $x, z \in C$, i.e. $x \sim z$.

The equivalence relation above defines a partition of the space X into equivalence classes which are called the connected components. Each of the connected components is a maximal (with respect to the inclusion \subset) connected subspace of X. Different connected components are disjoint.

From Corollary 9.6 we see that every connected component is closed.
Example 9.8. (1) Clearly, the only connected component of a connected topological space X is the whole X.
(2) The space $\mathbf{R}-\{0\}$ has two connected components $(-\infty, 0)$ and $(0, \infty)$.
(3) The Jordan Curve Theorem [1] states that the complement of a planar simple closed curve $C \subset \mathbf{R}^{2}$ (i.e. the set $\mathbf{R}^{2}-C$) has two connected components (the interior and the exterior). Here $C=f\left(S^{1}\right)$ is the image of an injective continuous map $f: S^{1} \rightarrow \mathbf{R}^{2}$ where S^{1} is the standard circle.

9.2. Connected subspaces of R

ThEOREM 9.9. A nonempty subset $A \subset \mathbf{R}$ is connected if and only if it is one of the intervals $(a, b),(a, b],[a, b),[a, b]$ where $a \in \mathbf{R} \cup\{-\infty\}$ and $b \in \mathbf{R} \cup\{\infty\}$.

Proof. From Lemma 9.3 we know that the intervals are connected; we only need to prove the inverse statement, i.e. any connected subset of \mathbf{R} is an interval.

Let $A \subset \mathbf{R}$ be connected and $a, b \in A$ where $a<b$. If $c \in(a, b)$ and $c \notin A$ we may consider the subsets $A \cap(-\infty, c)=U$ and $A \cap(c, \infty)=V$ are open and closed in A, they form a partition

$$
A=U \sqcup V
$$

and $U \neq \emptyset, V \neq \emptyset$. This contradicts the connectivity of A, see Lemma 9.2.
The above argument shows that a connected subset $A \subset \mathbf{R}$ has the following property: if $a, b \in A$, where $a<b$, then $[a, b] \subset A$.

Denote $\alpha=\inf A$ and $\beta=\sup A$. If $c \in(\alpha, \beta)$ then (using properties of the infimum and supremum) one can find $a_{n} \in A \cap(\alpha, c)$ and $b_{n} \in A \cap(c, \beta)$. Applying the property of A described in the previous paragraph one obtains that $c \in A$. In other words, we obtain that

$$
(\alpha, \beta) \subset A
$$

On the other hand obviously $A \subset[\alpha, \beta]$. Thus we see that A equals one of the intervals (α, β), $(\alpha, \beta],[\alpha, \beta),[\alpha, \beta]$.

Theorem 9.10. The image of a connected space under a continuous map is connected.
Proof. Assume that X is connected and $f: X \rightarrow Y$ be a continuous and surjective map. If $\phi: Y \rightarrow\{0,1\}$ is a continuous and surjective map that $\phi \circ f: X \rightarrow\{0,1\}$ is also continuous and surjective which contradicts the connectivity of X.

Corollary 9.11 (Intermediate Value Theorem). Let $f: X \rightarrow \mathbf{R}$ be a continuous function on a connected space X. Then the image $f(X) \subset \mathbf{R}$ is an interval.

Proof. By Theorem 9.10 the image $f(X)$ is connected and by Theorem 9.9 the image is an interval.

We note also the following:
Example 9.12. Any non-empty connected subset of the Cantor set C is a single point. Indeed, if $A \subset C$ is a connected subset containing at least two points $a<b$ the by Theorem $9.9 C$ must contain the interval $[a, b]$. But this would contradict Theorem 4.33 sating that the Lebesgue measure of C is zero. We see that the Cantor set is totally disconnected, which means that its every connected component is a single point.

9.3. Path-connectedness

In this section we shall discuss a more intuitive notion of connectivity.
Definition 9.13. A topological space X is said to be path-connected if for any pair of points $x, y \in X$ there exists a continuous path $\gamma:[0,1] \rightarrow X$ satisfying $\gamma(0)=x$ and $\gamma(1)=y$, see Figure 1.

Figure 1. A path connecting two points in X.

Theorem 9.14. Any path-connected space is connected.
Proof. Assuming that X is path-connected, consider a continuous map $f: X \rightarrow\{0,1\}$. If f is surjective, let $f(x)=0$ and $f(y)=1$, where $x, y \in X$. Applying Definition 9.13 we may find a continuous map $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$. Then $f \circ \gamma:[0,1] \rightarrow\{0,1\}$ is a surjective continuous map; this contradicts Lemma 9.3 stating that the interval $[0,1]$ is connected.

Example 9.15. The following spaces are connected and path-connected:
(1) \mathbf{R}^{n};
(2) Any convex subset of \mathbf{R}^{n};
(3) A Banach space or a Hilbert space;
(4) The space ℓ^{2};
(5) $\mathbf{R}^{n}-\{0\}$ if $n \geq 2$;
(6) $\mathbf{R}^{n}-A$, where A is a finite subset, if $n \geq 2$;
(7) $\mathbf{R}^{n}-L$, where $L \subset \mathbf{R}^{n}$ is a linear subspace, assuming that $n-\operatorname{dim} L \geq 2$.

Example 9.16. The following space $X \subset \mathbf{R}^{2}$ is connected but not path-connected. The space X is the union

$$
X=A \cup B
$$

where $A=0 \times[-1,1]$ and

$$
B=\left\{\left(x, \sin \left(\frac{1}{x}\right)\right) ; x \in(0, \infty)\right\}
$$

Figure 2. A connected but not path-connected space.
see Figure 2. Clearly the sets A and B are connected since they are homeomorphic to intervals, see Lemma 9.3. To show that X is connected we assume that $f: X \rightarrow\{0,1\}$ be a continuous and surjective. The restrictions $\left.f\right|_{A}$ and $\left.f\right|_{B}$ are constant and their values are distinct since otherwise f would not be surjective. Assuming that $\left.f\right|_{A} \equiv 0$ and $\left.f\right|_{B} \equiv 1$ we see that the sequence

$$
x_{n}=\left((\pi n)^{-1}, 0\right) \in B
$$

where $n=1,2, \ldots$ satisfies $f\left(x_{n}\right)=1$ while $f(0,0)=0$ and $(0,0)=\lim x_{n}$, i.e. the function f is discontinuous.

To show that X is not path-connected, assume that $\gamma:[0,1] \rightarrow X$ is a continuous path satisfying $\gamma(0)=(0,0) \in A \subset X$ and $\gamma(1)=\left(\pi^{-1}, 0\right)=x_{1} \in B \subset X$. Clearly, removing any point x_{n} makes B and X disconnected. Therefore, we can find a sequence

$$
1=t_{1}>t_{2}>t_{3}>\cdots>0
$$

such that $\gamma\left(t_{n}\right)=x_{n}$ for $n=1,2, \ldots$. The decreasing and bounded sequence t_{n} has a limit $t^{*}=\lim t_{n}$. If $p_{1}: X \rightarrow \mathbf{R}$ and $p_{2}: X \rightarrow \mathbf{R}$ denote the projections of X onto the x_{1} and x_{2} axes correspondingly, then for any n one has $p_{1}\left(\gamma\left(t_{n}\right)\right)=(\pi n)^{-1}$ and $p_{2}\left(\gamma\left(t_{n}\right)\right)=0$ implying that $\gamma\left(t^{*}\right)=(0,0)$. Let $U \subset \mathbf{R}^{2}$ be an open ball around (0,0) of radius $r<1$. By continuity there exists $\delta>0$ such that $\gamma(t) \in U$ for all $t \in\left(t^{*}-\delta, t^{*}+\delta\right) \cap[0,1]$. But the set $U \cap X$ (see Figure 3) is obviously disconnected and the points x_{n} and x_{n+1} lie in different connected components. This

Figure 3. The set $U \cap X$.
contradiction shows that X is not path-connected.

9.4. Local connectedness and local path-connectedness

Definition 9.17. A topological space X is said to be locally connected at a point $x \in X$ if every neighbourhood U of x contains a connected neighbourhood V of x.

A topological space X is locally connected if it is locally connected at each of its points.
Example 9.18 . The real line \mathbf{R} is locally connected.
An open subset of a locally connected space is also locally connected.
The space $X=\left\{n^{-1} ; n=1,2, \ldots\right\} \cup\{0\} \subset \mathbf{R}$ is not locally connected.

Theorem 9.19. Every connected component of a locally connected space is open.
Proof. Let $C \subset X$ be a connected component of a locally connected space X. For $x \in C$, consider a connected open subset $U_{x} \subset X$ containing x. This set U_{x} must lie in C, i.e. $U_{x} \subset C$. Thus we see that C is open as it equals the union of the open sets U_{x}, where $x \in C$.

Similarly to Definition 9.17 we introduce:
Definition 9.20. A topological space X is said to be locally path-connected at a point $x \in X$ if every neighbourhood U of x contains a path-connected neighbourhood V of x.

A topological space X is locally path-connected if it is locally path-connected at each of its points.

Example 9.21. The space X of Example 9.16 is not locally path-connected at the points $(0, y)$ where $y \in[-1,1]$. Figure 3 shows the intersection of X with a small open ball; this intersection contains infinitely many path-connected components "converging" to $U \cap(0 \times[-1,1])$. The same argument shows that X is not locally connected.

Theorem 9.22. Every path-connected component of a locally path-connected space is open.
The proof is similar to the proof of Theorem 9.19.
Theorem 9.23. A locally path-connected space is path-connected if and only if it is connencted.
Proof. We only need to show that for locally path-connected spaces connectedness implies path-connectedness.

Suppose that X is locally path-connected and connected. Consider the path-connected component $C \subset X$ of one of its points. Then C is open (by Theorem 9.22) and its complement $X-C$ is also open (as its the union of the other path-connected components). Since X is connected and $C \neq \emptyset$ then $C=X$, i.e. X is path-connected.

