
CHAPTER 9

Connected Spaces

9.1. Connected and disconnected topological spaces

Definition 9.1. A topological space X is said to be connected if any continuous map f : X !
{0, 1} is constant. Here {0, 1} ⇢ R is equipped with the induced (discrete) topology.

A space which is not connected is called disconnected.
If a topological space X is homeomorphic to a connected topological space Y then X is con-

nected as well. This directly follows from the definition.

Lemma 9.2. The following conditions are equivalent:

(a) X is connected;
(b) There are no continuous surjective maps f : X ! {0, 1};
(c) Any subset U ⇢ X which is both closed and open is either U = ; or U = X.

Proof. Conditions (a) and (b) are clearly equivalent. If f : X ! {0, 1} is a continuous
surjective map then f�1(0) = U ⇢ X is a closed and open subset distinct from ;, X, i.e. (b)
implies (c). Conversely, if U ⇢ X is a closed and open subset distinct from ;, X then the map
f : X ! {0, 1} with f(U) ⌘ 0 and f(X � U) ⌘ 1 is continuous and surjective. ⇤

Lemma 9.3. The intervals (a, b), (a, b], [a, b), [a, b] are connected.

Proof. Any continuous map f : (a, b) ! {0, 1} is constant as follows from the Mean Value
Theorem from the course of Calculus. Similarly for all other intervals. ⇤

Lemma 9.4. If X = A [B where A \B 6= ; and A and B are connected then X is connected.

Proof. Let f : X ! {0, 1} be continuous. Then the restrictions f |A and f |B are constant,
and, since A \B 6= ;, we see that f is constant. ⇤

Theorem 9.5. Let A ⇢ X be a connected subspace. If A ⇢ B ⇢ A then B is also connected.

Proof. Let f : B ! {0, 1} be a continuous map. Then f |A is constant. Let’s assume that
f |A ⌘ 0. Then U = f�1(0) ⇢ B is a closed subset containing A and hence U = B, i.e. f ⌘ 0. ⇤

As a special case of Theorem 9.5 we obtain:

Corollary 9.6. If a subset A of a topological space X is connected then its closure A ⇢ X is
connected as well.

Example 9.7. The following spaces are disconnected:

(1) {0, 1} is disconnected;
(2) R� {0} is disconnected;
(3) Q is disconnected;

57



58 9. CONNECTED SPACES

(4) The Cantor set C is disconnected.

Next we define the notion of a connected component.
Let X be a topological space. We may introduce an equivalence relation on X by declaring

points x, y 2 X to be equivalent x ⇠ y if there exists a connected subset A ⇢ X containing both
x and y. This relation is clearly symmetric and reflexive. To show that it is transitive, assume
that x ⇠ y and y ⇠ z. Then x, y 2 A and y, z 2 B where A,B ⇢ X are connected subsets. Then
C = A [B is connected (by Lemma 9.4) and x, z 2 C, i.e. x ⇠ z.

The equivalence relation above defines a partition of the space X into equivalence classes which
are called the connected components. Each of the connected components is a maximal (with respect
to the inclusion ⇢) connected subspace of X. Di↵erent connected components are disjoint.

From Corollary 9.6 we see that every connected component is closed.

Example 9.8. (1) Clearly, the only connected component of a connected topological space X
is the whole X.

(2) The space R� {0} has two connected components (�1, 0) and (0,1).
(3) The Jordan Curve Theorem [1] states that the complement of a planar simple closed curve

C ⇢ R2 (i.e. the set R2 � C) has two connected components (the interior and the exterior). Here
C = f(S1) is the image of an injective continuous map f : S1 ! R2 where S1 is the standard circle.

9.2. Connected subspaces of R

Theorem 9.9. A nonempty subset A ⇢ R is connected if and only if it is one of the intervals
(a, b), (a, b], [a, b), [a, b] where a 2 R [ {�1} and b 2 R [ {1}.

Proof. From Lemma 9.3 we know that the intervals are connected; we only need to prove the
inverse statement, i.e. any connected subset of R is an interval.

Let A ⇢ R be connected and a, b 2 A where a < b. If c 2 (a, b) and c /2 A we may consider the
subsets A \ (�1, c) = U and A \ (c,1) = V are open and closed in A, they form a partition

A = U t V,

and U 6= ;, V 6= ;. This contradicts the connectivity of A, see Lemma 9.2.
The above argument shows that a connected subset A ⇢ R has the following property: if

a, b 2 A, where a < b, then [a, b] ⇢ A.
Denote ↵ = inf A and � = supA. If c 2 (↵,�) then (using properties of the infimum and

supremum) one can find an 2 A \ (↵, c) and bn 2 A \ (c,�). Applying the property of A described
in the previous paragraph one obtains that c 2 A. In other words, we obtain that

(↵,�) ⇢ A.

On the other hand obviously A ⇢ [↵,�]. Thus we see that A equals one of the intervals (↵,�),
(↵,�], [↵,�), [↵,�]. ⇤

Theorem 9.10. The image of a connected space under a continuous map is connected.

Proof. Assume that X is connected and f : X ! Y be a continuous and surjective map. If
� : Y ! {0, 1} is a continuous and surjective map that � � f : X ! {0, 1} is also continuous and
surjective which contradicts the connectivity of X. ⇤

Corollary 9.11 (Intermediate Value Theorem). Let f : X ! R be a continuous function on
a connected space X. Then the image f(X) ⇢ R is an interval.
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Proof. By Theorem 9.10 the image f(X) is connected and by Theorem 9.9 the image is an
interval. ⇤

We note also the following:

Example 9.12. Any non-empty connected subset of the Cantor set C is a single point. Indeed,
if A ⇢ C is a connected subset containing at least two points a < b the by Theorem 9.9 C must
contain the interval [a, b]. But this would contradict Theorem 4.33 sating that the Lebesgue measure
of C is zero. We see that the Cantor set is totally disconnected, which means that its every connected
component is a single point.

9.3. Path-connectedness

In this section we shall discuss a more intuitive notion of connectivity.

Definition 9.13. A topological space X is said to be path-connected if for any pair of points
x, y 2 X there exists a continuous path � : [0, 1] ! X satisfying �(0) = x and �(1) = y, see Figure
1.

�

Figure 1. A path connecting two points in X.

Theorem 9.14. Any path-connected space is connected.

Proof. Assuming that X is path-connected, consider a continuous map f : X ! {0, 1}. If f
is surjective, let f(x) = 0 and f(y) = 1, where x, y 2 X. Applying Definition 9.13 we may find a
continuous map � : [0, 1] ! X with �(0) = x and �(1) = y. Then f �� : [0, 1] ! {0, 1} is a surjective
continuous map; this contradicts Lemma 9.3 stating that the interval [0, 1] is connected. ⇤

Example 9.15. The following spaces are connected and path-connected:

(1) Rn;
(2) Any convex subset of Rn;
(3) A Banach space or a Hilbert space;
(4) The space `2;
(5) Rn � {0} if n � 2;
(6) Rn �A, where A is a finite subset, if n � 2;
(7) Rn � L, where L ⇢ Rn is a linear subspace, assuming that n� dimL � 2.

Example 9.16. The following space X ⇢ R2 is connected but not path-connected. The space
X is the union

X = A [B

where A = 0⇥ [�1, 1] and

B = {(x, sin( 1
x
));x 2 (0,1)},
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A B

Figure 2. A connected but not path-connected space.

see Figure 2. Clearly the sets A and B are connected since they are homeomorphic to intervals,
see Lemma 9.3. To show that X is connected we assume that f : X ! {0, 1} be a continuous and
surjective. The restrictions f |A and f |B are constant and their values are distinct since otherwise
f would not be surjective. Assuming that f |A ⌘ 0 and f |B ⌘ 1 we see that the sequence

xn = ((⇡n)�1, 0) 2 B

where n = 1, 2, . . . satisfies f(xn) = 1 while f(0, 0) = 0 and (0, 0) = limxn, i.e. the function f is
discontinuous.

To show thatX is not path-connected, assume that � : [0, 1] ! X is a continuous path satisfying
�(0) = (0, 0) 2 A ⇢ X and �(1) = (⇡�1, 0) = x1 2 B ⇢ X. Clearly, removing any point xn makes
B and X disconnected. Therefore, we can find a sequence

1 = t1 > t2 > t3 > · · · > 0

such that �(tn) = xn for n = 1, 2, . . . . The decreasing and bounded sequence tn has a limit
t⇤ = lim tn. If p1 : X ! R and p2 : X ! R denote the projections of X onto the x1 and x2

axes correspondingly, then for any n one has p1(�(tn)) = (⇡n)�1 and p2(�(tn)) = 0 implying that
�(t⇤) = (0, 0). Let U ⇢ R2 be an open ball around (0, 0) of radius r < 1. By continuity there
exists � > 0 such that �(t) 2 U for all t 2 (t⇤ � �, t⇤ + �) \ [0, 1]. But the set U \X (see Figure 3)
is obviously disconnected and the points xn and xn+1 lie in di↵erent connected components. This

U � X

Figure 3. The set U \X.

contradiction shows that X is not path-connected.

9.4. Local connectedness and local path-connectedness

Definition 9.17. A topological space X is said to be locally connected at a point x 2 X if
every neighbourhood U of x contains a connected neighbourhood V of x.

A topological space X is locally connected if it is locally connected at each of its points.

Example 9.18. The real line R is locally connected.
An open subset of a locally connected space is also locally connected.
The space X = {n�1;n = 1, 2, . . . } [ {0} ⇢ R is not locally connected.
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Theorem 9.19. Every connected component of a locally connected space is open.

Proof. Let C ⇢ X be a connected component of a locally connected space X. For x 2 C,
consider a connected open subset Ux ⇢ X containing x. This set Ux must lie in C, i.e. Ux ⇢ C.
Thus we see that C is open as it equals the union of the open sets Ux, where x 2 C. ⇤

Similarly to Definition 9.17 we introduce:

Definition 9.20. A topological space X is said to be locally path-connected at a point x 2 X
if every neighbourhood U of x contains a path-connected neighbourhood V of x.

A topological space X is locally path-connected if it is locally path-connected at each of its
points.

Example 9.21. The space X of Example 9.16 is not locally path-connected at the points (0, y)
where y 2 [�1, 1]. Figure 3 shows the intersection of X with a small open ball; this intersection
contains infinitely many path-connected components “converging” to U \ (0⇥ [�1, 1]). The same
argument shows that X is not locally connected.

Theorem 9.22. Every path-connected component of a locally path-connected space is open.

The proof is similar to the proof of Theorem 9.19.

Theorem 9.23. A locally path-connected space is path-connected if and only if it is connencted.

Proof. We only need to show that for locally path-connected spaces connectedness implies
path-connectedness.

Suppose that X is locally path-connected and connected. Consider the path-connected com-
ponent C ⇢ X of one of its points. Then C is open (by Theorem 9.22) and its complement X � C
is also open (as its the union of the other path-connected components). Since X is connected and
C 6= ; then C = X, i.e. X is path-connected. ⇤


