Main Examination period 2021 - May/June - Semester B
 Online Alternative Assessments

MTH5131: Actuarial Statistics - SOLUTIONS

All questions are unseen, but similar to lectures or coursework, except 5 which is just unseen.

Question 1 [12 marks]. [U]
(a) Previous national household longitudinal studies could be used for pre-lockdown data. They could also be used for post-lockdown data, if they exist, or a new study could be carried out.
(b) This is an inferential study.
(c) This study is longitudinal in nature. You would want to know how the alcohol, e-cigarette and cigarette consumption of respondents to the study over a timespan that includes the lockdown.
(d) You might plot alcohol, e-cigarette and cigarette consumption over a timespan that includes the lockdown among different categories of respondents.

Total marks so far: 12
Please remove the showmarks command before passing the exam to the checker

Question 2 [9 marks].
(a) We solve the equation

$$
S=\left(\begin{array}{lll}
5 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 7
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=9\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
-4 a+2 b=0 \\
2 a-3 b+2 c=0 \\
2 b-2 c=0
\end{array}\right.
$$

One solution is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

We normalise to give

$$
\left(\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right)
$$

The other possible answer is

$$
\left(\begin{array}{l}
-1 / 3 \\
-2 / 3 \\
-2 / 3
\end{array}\right)
$$

(b) The eigenvalues all lie on a line in the Skree diagram ansd so they are all on the mountain.
The two largest eigenvalues only take $15 / 18=0.833<0.90$ of the total variance. Either way, all components are principal.

Total marks so far: 21
Please remove the showmarks command before passing the exam to the checker

Question 3 [16 marks].

(a) (i) The data is already ranked (although not in order from smallest to largest). The differences are We find that $\sum_{i} d_{i}^{2}=22$ and so

Candidate	Interviewer 1	Interviewer 2	Difference
A	7	8	-1
B	2	3	-1
C	10	9	1
D	14	14	0
E	15	13	2
F	6	5	1
G	1	2	-1
H	8	7	1
I	9	10	-1
J	4	4	0
K	5	6	-1
L	3	1	2
M	13	15	-2
N	11	12	-1
O	12	11	1

$$
r_{s}=1-\frac{6 \times 22}{15 \times\left(15^{2}-1\right)}=0.9607
$$

(ii) The t-statistic with $15-2=13$ degrees of freedom is

$$
\frac{(0.9607) \sqrt{13}}{\sqrt{1-0.9607^{2}}}=12.48077
$$

The p-value $2 P(Y>12.48077)$ is much less than 1% and is strong evidence to conclude that the rankings are correlated.
(b) We make a table of concordant and discordant pairs:

Rank1	Rank2	C	D
1	2	13	1
2	3	12	1
3	1	12	0
4	4	11	0
5	6	9	1
6	5	9	0
7	8	7	1
8	7	7	0
9	10	5	1
10	9	5	0
11	12	3	1
12	11	3	0
13	15	0	2
14	14	0	1
15	13		

Totalling the columns gives $n_{c}=96$ and $n_{d}=9$ Thus

$$
\tau=\frac{96-9}{(15)(14) / 2}=0.82857
$$

(a) The density of Y is

$$
f_{Y}(y)=\theta y^{\theta-1}, \quad 0<y<1
$$

The first moment is

$$
E(Y)=\int_{0}^{1} y f_{Y}(y) d y=\int_{0}^{1} \theta y^{\theta} d y=\frac{\theta}{\theta+1}
$$

We set

$$
\bar{y}=E(Y)=\frac{\theta}{1+\theta} \Rightarrow \tilde{\theta}=\frac{\bar{y}}{1-\bar{y}}
$$

We find that

$$
\bar{y}=\frac{0.92+0.79+0.90+0.65+0.86+0.47+0.73+0.97+0.94+0.77}{10}=0.8
$$

Therefore

$$
\tilde{\theta}=\frac{0.8}{1-0.8}-1=4
$$

(b) The likelihood is

$$
\theta^{10}\left(\prod_{i=1}^{10} y_{i}\right)^{\theta-1}
$$

The log-likelihood is

$$
\ell=10 \ln (\theta)+(\theta-1) \sum_{i=1}^{10} \ln \left(y_{i}\right)
$$

Taking derivatives:

$$
\frac{10}{\theta}+\sum_{i=1}^{10} \ln \left(y_{i}\right)=0 \Rightarrow \hat{\theta}=-\frac{10}{\sum_{i=1}^{10} \ln \left(y_{i}\right)}
$$

(Clearly, the second derivative is negative.) We get

$$
\hat{\theta}=4.116
$$

(c) The likelihood is

$$
\theta^{10}\left(\prod_{i=1}^{10} y_{i}\right)^{\theta-1}(P(Y<0.60))^{2}
$$

We calculate that

$$
P(Y<0.60)=\int_{0}^{0.60} \theta y^{\theta-1}=(0.60)^{\theta}
$$

The log-likelihood is

$$
\ell=10 \ln (\theta)+(\theta-1) \sum_{i=1}^{10} \ln \left(y_{i}\right)+2 \theta \ln (0.60)
$$

Taking derivatives:

$$
\frac{10}{\theta}+\sum_{i=1}^{10} \ln \left(y_{i}\right)+2 \ln (0.60)=0 \Rightarrow \hat{\theta}=-\frac{10}{\sum_{i=1}^{10} \ln \left(y_{i}\right)+2 \ln (0.60)}
$$

(Clearly, the second derivative is negative.) We get

$$
\hat{\theta}=2.8976
$$

The decrease is the in the maximum likelihood estimator estimator is due to the extra information that some data were small relative to the other data.

Total marks so far: 55
Please remove the showmarks command before passing the exam to the checker

Question 5 [12 marks].

(a) The expectation of th estimator is

$$
\begin{aligned}
E\left[C\left(Y_{1}+Y_{2}+Y_{3}\right)\right] & =C\left(E\left[Y_{1}\right]+E\left[Y_{2}\right]+E\left[Y_{3}\right]\right) \\
& =C\left(\frac{1}{\alpha}+\frac{1}{2 \alpha}+\frac{1}{4 \alpha}\right) \\
& =\frac{7 C}{4 \alpha}
\end{aligned}
$$

In order for $C\left(Y_{1}+Y_{2}+Y_{3}\right)$ to be unbiased for $1 / \alpha$ we must have

$$
C=\frac{4}{7}
$$

(b) The MSE of the the unbiased estimator we found in (a) is its variance:

$$
\begin{aligned}
& C^{2}\left(\frac{1}{\alpha^{2}}+\frac{1}{4 \alpha^{2}}+\frac{1}{16 \alpha}\right) \\
= & C^{2} \frac{21}{16 \alpha^{2}}=\frac{16}{49} \times \frac{21}{16 \alpha^{2}}=\frac{3}{7 \alpha^{2}}
\end{aligned}
$$

Total marks so far: 67
Please remove the showmarks command before passing the exam to the checker

Question 6 [9 marks].

(a) The prior is

$$
f(p) \propto p^{4-1}(1-p)^{3-1}=p^{3}(1-p)^{2}
$$

The likelihood is

$$
f(y \mid p) \propto \prod_{i=1}^{10}\left(p(1-p)^{y_{i}}\right)=p^{10}(1-p)^{\sum_{i=1}^{n} y_{i}}=p^{10}(1-p)^{42}
$$

The posterior is proportional to

$$
p^{3}(1-p)^{2} \times p^{10}(1-p)^{42}=p^{13}(1-p)^{44}
$$

Therefore, the posterior is $\operatorname{Beta}(14,45)$ distributed.
(b) The Bayesian estimate of p under square error loss is the expectation of the posterior. The posterior is Beta $(14,45)$. Therefore, the Bayesian estimate of p under squared error loss is

$$
\frac{14}{14+45}=\frac{14}{59}
$$

(a) $E\left[s^{2}(\theta)\right]$ is estimated by the average of the sample variances:

$$
E\left[s^{2}(\theta)\right]=\frac{130+60+35+100}{4}=81.25
$$

The sample mean of the $\overline{X_{i}}$'s is:

$$
\bar{X}=\frac{125+85+140+175}{4}=131.25
$$

and the sample variance of the $X_{i}{ }^{\prime} \mathrm{s}$ is:

$$
\begin{aligned}
& \frac{1}{4-1} \sum_{i=1}^{3}\left(\overline{X_{i}}-\bar{X}\right)^{2} \\
= & \frac{(125-131.25)^{2}+(85-131.25)^{2}+(140-131.25)^{2}+(175-131.25)^{2}}{3} \\
= & 1389.583
\end{aligned}
$$

Moreover,

$$
\operatorname{var}[m(\theta)]=\frac{1}{3} \sum_{i=1}^{3}\left(\overline{X_{i}}-\bar{X}\right)^{2}-\frac{1}{5} E\left[s^{2}(\theta)\right]=1389.583-\frac{1}{5} \times 81.25=1373.333
$$

The credibility factor is

$$
Z=\frac{5}{5+\frac{81.25}{1373.333}}=0.9883
$$

[6]

(b) The credibility estimate of the amount per claim for the coming year for product 3 is

$$
(1-0.9883) \times 131.25+0.9883 \times 140=139.8977
$$

(a) In parameterised form, the linear predictors are (with i corresponding to the levels of YO):

$$
\text { Model 1: } \quad \alpha_{i} \quad \text { (2 parameters) }
$$

There are two parameters for the 2 combinations of $Y O$.

$$
\text { Model 2: } \quad \alpha_{i}+\beta_{j} \quad \text { (4 parameters) }
$$

There is one parameter to set the base level for the combination $Y O_{0}, F M S_{0}$ and three additional parameters for the combinations of the higher levels of the two factors.
(b) The completed table, together with the differences in the scaled deviance and degrees of freedom, is shown below.

Model	Scaled Deviance	Degrees of Freedom	Δ Scaled Deviance	Δ Degrees of Freedom
1	40	5		
$Y O$	30	4	10	1
$Y O+F M S$	23	2	7	2

(It is not necessary for the students to add the additional columns to the table.)
Comparing the constant model and Model 1
The difference in the scaled deviances is 10 .
This is greater than 3.841 , the upper 5% point of the χ_{1}^{2} distribution.
So Model 1 is a significant improvement over the constant model.
Alternatively, if we use the AIC to compare models, we find that since
Δ (deviance) $>2 \times \Delta$ degrees of freedom, because $10>2 \times 1$, Model 1 is a significant improvement over the constant model.

Comparing Model 1 and Model 2
The difference in the scaled deviances is 7 .
This is greater than 5.991 , the upper 5% point of the χ_{2}^{2} distribution.
So Model 2 is a significant improvement over Model 1.
Alternatively, if we use the AIC to compare models, we find that since Δ (deviance) $>2 \times \Delta$ degrees of freedom, because $7>2 \times 2$, Model 2 is a significant improvement over model 1.

End of Paper.

