Main Examination period 2022 - May/June - Semester B

MTH5131: Actuarial Statistics - SOLUTIONS

$[C]=$ Similar to Coursework, $[U]=$ Unseen

Question 1 [10 marks]. [U]
(a) It is not simple random sampling because each subset does not have the same probability of being chosen and it is not stratified sampling because the students are not divided inbto groups.
(b) This is stratified sampling because the students are divided into groups from which a number of students are chosen randomly.
(c) This is neither because students are not chosen randomly. The students who go to the library may not be typical.

Total marks so far: 10
Please remove the showmarks command before passing the exam to the checker

Question 2 [12 marks]. [C]
(a) The average of the first column is $(19+22+6+3+2+20) / 6=12$. The average of the second column is $(12+6+9+15+13+5) / 6=10$. The centred matrix is therefore

$$
X=\left(\begin{array}{cc}
7 & 2 \\
10 & -4 \\
-6 & -1 \\
-9 & 5 \\
-10 & 3 \\
8 & -5
\end{array}\right)
$$

The sample covariance matrix is

$$
\frac{1}{6-1} X^{T} X=\left(\begin{array}{cc}
86 & -27 \\
-27 & 16
\end{array}\right)
$$

(b) The characteristic polynomial of $X^{T} X$ is

$$
(86-\lambda)(16-\lambda)-27^{2}=\lambda^{2}-102 \lambda+647
$$

The eigenvalues are

$$
\lambda=\frac{102 \pm \sqrt{102^{2}-4 \times 647}}{2}=95.20407,6.795928
$$

The component corresponding to 95.20407 satisfies

$$
\left(\begin{array}{cc}
86-95.20407 & -27 \\
-27 & 16-95.20407
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

so

$$
y=(86-95.20407) x / 27=-0.3408916 x
$$

Taking $x=1,\binom{1}{-0.3408916}$ is an eigenvector. Normalising gives the component

$$
\frac{1}{\sqrt{1^{2}+0.3408916^{2}}}\binom{1}{-0.3408916}=\binom{0.9465153}{-0.3226591}
$$

Question 3 [16 marks]. [C]

(a) (i) With \mathbf{x} production and \mathbf{y} salaries, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=11800, \sum_{i=1}^{n} x_{i}^{2}=32540000, \sum_{i=1}^{n} y_{i}=1520, \sum_{i=1}^{n} y_{i}^{2}=661000, \sum_{i=1}^{n} x_{i} y_{i}=4429000, \\
& S_{x x}=4692000, S_{y y}=198920, S_{x y}=841800 \Rightarrow r=\frac{841800}{\sqrt{4692000 \times 198920}}=0.8713461
\end{aligned}
$$

(ii) Under H_{0}, the t-value with $5-2=3$ degrees of freedom is is

$$
\frac{0.8713461 \times \sqrt{5-2}}{\sqrt{1-0.8713461^{2}}}=3.0758
$$

The upper 2.5% point of the t_{3} distribution is 3.182 . We accept H_{0} and conclude that $\rho=0$.
OR
The p-value is 0.0543131 . We accept H_{0} and conclude that $\rho=0$.
(b) The ranks of \mathbf{x} are $(1,2,4,5,3)$ and the ranks of \mathbf{y} are $(2,3,4,5,1)$ We make a table of concordant and discordant pairs:

Rank1	Rank2	C	D
1	2	3	1
2	3	2	1
4	4	2	0
5	5	1	0
3	1		

Totalling the columns gives $n_{c}=8$ and $n_{d}=2$ Thus

$$
\tau=\frac{8-2}{(5)(4) / 2}=0.6
$$

(a) The likelihood is

$$
\begin{aligned}
L(\theta ; \underline{y}) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \theta}} \exp \left(-\frac{\left(y_{i}-5\right)^{2}}{2 \theta}\right) \\
& =(2 \pi \theta)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(y_{i}-5\right)^{2}}{2 \theta}\right)
\end{aligned}
$$

and so

$$
\begin{gathered}
\ln L(\theta ; \underline{y})=-\frac{n}{2} \ln (2 \pi \theta)-\sum_{i=1}^{n} \frac{\left(y_{i}-5\right)^{2}}{2 \theta} \\
\frac{d}{d \theta} \ln L(\theta ; \underline{y})=-\frac{n}{2 \theta}+\sum_{i=1}^{n} \frac{\left(y_{i}-5\right)^{2}}{2 \theta^{2}}
\end{gathered}
$$

and

$$
\frac{d^{2}}{d \theta^{2}} \ln L(\theta ; \underline{y})=\frac{n}{2 \theta^{2}}-\sum_{i=1}^{n} \frac{\left(y_{i}-5\right)^{2}}{\theta^{3}}
$$

Therefore the Fisher Information is

$$
\mathbb{E}\left(-\frac{n}{2 \theta^{2}}+\sum_{i=1}^{n} \frac{\left(Y_{i}-5\right)^{2}}{\theta^{3}}\right)=-\frac{n}{2 \theta^{2}}+\frac{n \operatorname{Var}\left(Y_{i}\right)}{\theta^{3}}=-\frac{n}{2 \theta^{2}}+\frac{n \theta}{\theta^{3}}=\frac{n}{2 \theta^{2}}
$$

Thus,

$$
\begin{equation*}
\operatorname{CRLB}(\theta)=\frac{\left(\frac{d \theta}{d \theta}\right)^{2}}{n / 2 \theta^{2}}=\frac{2 \theta^{2}}{n} . \tag{7}
\end{equation*}
$$

(b)

$$
\mathbb{E}\left(\frac{\left(Y_{1}-5\right)^{2}+\left(Y_{2}-5\right)^{2}+\cdots+\left(Y_{n}-5\right)^{2}}{n}\right)=\frac{n \operatorname{Var}\left(Y_{i}\right)}{n}=\frac{n \theta}{n}=\theta
$$

and so the estimator is unbiased.

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{\left(Y_{1}-5\right)^{2}+\left(Y_{2}-5\right)^{2}+\cdots+\left(Y_{n}-5\right)^{2}}{n}\right) \\
& =\frac{n \operatorname{Var}\left(Y_{i}-5\right)^{2}}{n^{2}}=\frac{n\left(2 \theta^{2}\right)}{n^{2}}=\frac{2 \theta^{2}}{n}=\operatorname{CRLB}(\theta)
\end{aligned}
$$

and so the estimator is MVUE.
(a) The expectation of the Y_{i} is

$$
\mathbb{E}\left(Y_{i}\right)=\int_{0}^{1} y \theta y^{\theta-1} d y=\frac{\theta}{\theta+1}
$$

Therefore $\mathbb{E}(\bar{Y})=\frac{n \theta /(\theta+1)}{n}=\frac{\theta}{\theta+1}$ as well. The bias is

$$
\mathbb{E}(\bar{Y})-\frac{\theta}{\theta+1}=0
$$

The variance is

$$
\operatorname{Var}(\bar{Y})=\frac{n \operatorname{Var}\left(Y_{i}\right)}{n^{2}}=\frac{\operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}}\right)}{n}
$$

Thus,

$$
\mathrm{MSE}=\frac{\operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}}\right)}{n}+0^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and \bar{Y} is consistent.
(b) The bias is now

$$
\frac{n}{n+1} \mathbb{E}(\bar{Y})-\frac{\theta}{\theta+1}=\frac{\theta}{\theta+1}\left(\frac{n}{n+1}-1\right)=-\frac{\theta}{(n+1)(\theta+1)}
$$

The variance is

$$
\left(\frac{n}{n+1}\right)^{2} \operatorname{Var}(\bar{Y})=\left(\frac{n}{n+1}\right)^{2} \frac{\operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}}\right)}{n}
$$

Thus

$$
\operatorname{MSE}=\left(\frac{n}{n+1}\right)^{2} \frac{\operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}}\right)}{n}+\left(\frac{\theta}{(n+1)(\theta+1)}\right)^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and $\frac{n}{n+1} \bar{Y}$ is consistent.
(a) The likelihood is $\operatorname{Binomial}(24, \theta)$, so

$$
L(\theta ; 3)=\binom{24}{3} \theta^{3}(1-\theta)^{21} \propto \theta^{3}(1-\theta)^{21}
$$

and the prior is

$$
f(\theta) \propto \theta^{0.5}(1-\theta)^{0.5}
$$

. Therefore, the posterior density is

$$
f(\theta \mid 3) \propto \theta^{3}(1-\theta)^{21} \times \theta^{0.5}(1-\theta)^{0.5}=\theta^{3.5}(1-\theta)^{21.5}
$$

and the posterior is $\operatorname{Beta}(4.5,22.5)$ distributed.
(b) The mode of the posterior is found by

$$
\begin{gathered}
\frac{d}{d \theta} \theta^{3.5}(1-\theta)^{21.5}=0 \\
3.5 \theta^{2.5}(1-\theta)^{21.5}-21.5 \theta^{3.5}(1-\theta)^{20.5}=0 \\
3.5(1-\theta)-21.5 \theta=0
\end{gathered}
$$

so

$$
\theta=\frac{3.5}{3.5+21.5}=0.14
$$

Question 7 [13 marks]. [C,U]

(a) For the Normal/Normal model, in the formula for the credibility factor

$$
Z=\frac{n}{n+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}}=\frac{n}{n+\frac{400}{500}}=\frac{n}{n+\frac{4}{5}}
$$

where n should be taken as the number of years of past data.

Year	Pure Premium	Credibility factor at the start of year	Average pure premium based on number of years of past data available at the start of year	At the start of the year, the credibility estimate of the pure premium in the coming year
1	760	0.000	0.000	700.000
2	735	0.556	760.000	733.333
3	790	0.714	745.500	733.939

[13] 4 for each column, 1 for Z formula
Total marks so far: 88
Please remove the showmarks command before passing the exam to the checker

Question 8 [12 marks]. [U]

(a) The distribution is Gamma, the link is identity, the linear predictor is $\eta=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}$, where x_{1} is size, x_{2} is the factor new, and x_{3} is the number of beds.
(b) size:beds is the least significant coefficient, so the next model to be be checked is the model in (a), except the linear predictor is now $\eta=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}$
(c) The price would be

$$
44.3759+0.0740 \times 2064+22.7131 \times 3+0.0100 \times 2064 * 3=327.1712
$$

so the price is $£ 327,171$. .

Please remove the showmarks command before passing the exam to the checker

End of Paper.

