V-1. (a)

$$
g=\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
5 & 8 & 2 & 9 & 6 & 10 & 7 & 11 & 1 & 4 & 3
\end{array}\right)
$$

(b)

$$
\begin{gathered}
h^{-1}=(116793101)(82)(54), \\
g \circ h=(1463)(21159710), \\
h^{-1} \circ g \circ h=(1531147)(26108)
\end{gathered}
$$

(c) The order of a cycle is the length of the cycle. The order of an element g in S_{n} is the LCM of the orders of the cycles in g. With these in mind, the order of g is $\operatorname{lcm}(6,4)=12$ and the order of $h^{-1} \circ g \circ h$ is $1 \mathrm{~cm}(6,4)=12$.

In fact, $\left(h^{-1} \circ g \circ h\right)^{r}=\left(h^{-1} \circ g \circ h\right) \circ \cdots \circ\left(h^{-1} \circ g \circ h\right)=h^{-1} \circ g^{r} \circ h$. It therefore follows that $g^{r}=1$ if and only if $\left(h^{-1} \circ g \circ h\right)^{r}=h^{-1} \circ g \circ h=1$, i.e. the order of g equals the order of $h^{-1} \circ g \circ h$.

V -2. If g is a permutation in S_{n} of order r, then it is a product of cycles of length $\ell_{1}, \ldots, \ell_{s}$ (all $\geqslant 1)$, such that $\ell_{1}+\cdots+\ell_{s}=n$ and $\operatorname{lcm}\left(\ell_{1}, \ldots, \ell_{s}\right)=r$. If no such integers exist, there is no permutation of order s. If, on the other hand, such $\ell_{1}, \ldots, \ell_{r}$ exist, then it might be possible (not guaranteed!) that a permutation of order s exists. (a) For LCM to be 14 , there has to be a cycle divisible by 7 . If the order is 7 , then there can be one more cycle of order 1 only (since $n=8$) and $1 \mathrm{~cm}(7,1)=7$, not 14 . Hence there is no permutation of order 14 . (b) It seems $\ell_{1}=5, \ell_{2}=3$ define a possible cycle type. Indeed $(12345)(678)$ is an example. (c) Since $1 \mathrm{~cm}\left(\ell_{1}, \ldots, \ell_{s}\right)=2^{4}$, any one of $\ell_{1}, \ldots, \ell_{s}$ would be a power of 2 . In fact, there has to be a cycle of order 2^{4}. However, $2^{4}>8$, hence there cannot be a permutation of order 16 .

V-3. No. $(a * b) * c=d * c=a$ but $a *(b * c)=a * d=c$.
$\mathrm{V}-4$. We check the group axioms. (G0) If x and y are integers, then so is $x * y=x+y+1$. (G1) $(x * y) * z=(x+y+1) * z=x+y+1+z+1$. On the other hand, $x *(y * z)=$ $x *(y+z+1)=x+y+z+1+1$. They are equal. (G2) We must find an integer e which satisfies $x * e=e * x=x$, i.e. $x+e+1=x$. So e is inevitably -1 . Indeed, $x *(-1)=x+(-1)+1=x$ and $(-1) * x=(-1)+x+1=x$. (G3) Given x, we must find y such that $x * y=-1$, i.e. $x+y+1=-1$, i.e. $y=-x-2$. Indeed, $x *(-x-2)=x-x-2+1=-1(=e)$ and $(-x-2) * x=-x-2+x+1=-1(=e)$.

