MTH5113 (2022/23): Problem Sheet 11

These problems are for practice only. You do not need to submit them.
(1) (Boring computations-but you should know how to do them) Consider the following vector fields $\mathbf{F}, \mathbf{G}, \mathbf{H}$ on \mathbb{R}^{3}, where:

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=(x, y, z)_{(x, y, z)} \\
& \mathbf{G}(x, y, z)=\left(x^{2},-2 x y, 3 x z\right)_{(x, y, z)} \\
& \mathbf{H}(x, y, z)=\left(x^{2}+y^{2}+z^{2}, x^{4}-y^{2} z^{2}, x y z\right)_{(x, y, z)}
\end{aligned}
$$

(a) Compute the divergence of \mathbf{F}, \mathbf{G}, and \mathbf{H} at each point $(x, y, z) \in \mathbb{R}^{3}$.
(b) Compute the curl of \mathbf{F}, \mathbf{G}, and \mathbf{H} at each point $(x, y, z) \in \mathbb{R}^{3}$.
(2) (Fun with Green's theorem) Let C denote the circle

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=9\right\}
$$

and let us assign to C the anticlockwise orientation.
(a) Let \mathbf{F} be the vector field on \mathbb{R}^{2} defined by

$$
\mathbf{F}(x, y)=(x-y, x+y)_{(x, y)} .
$$

Compute the curve integral of \mathbf{F} over \mathbf{C} directly.
(b) Compute the curve integral from part (a) using Green's theorem. Check that your answer here matches the answer you obtained in part (a).
(c) Let \mathbf{G} be the vector field on \mathbb{R}^{2} defined by

$$
\mathbf{G}(x, y)=\left(x^{9999999999999} e^{x}+y, x+y^{33333333333333} e^{2 y}\right)_{(x, y)} .
$$

Compute (using your favourite method) the curve integral of \mathbf{G} over \mathbf{C}.
(3) (Fun with Stokes' theorem) Let S denote the upper half-sphere,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, z>0\right\} .
$$

In addition, let C denote the boundary of S , i.e. the circle

$$
C=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}
$$

and assign to C the (anticlockwise) orientation generated by the parametrisation

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \gamma(t)=(\cos t, \sin t, 0) .
$$

(a) Let \mathbf{F} be the vector field on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=(x, y, z)_{(x, y, z)}
$$

Compute directly the curve integral of \mathbf{F} over \mathbf{C}.
(b) Evaluate the integral from part (a) by applying Stokes' theorem and computing instead an appropriate integral over S. Make sure that you obtain the same answer as in (a).
(c) Let \mathbf{G} and \mathbf{H} be smooth vector fields on \mathbb{R}^{3}, and assume that $\mathbf{G}(\mathbf{p})=\mathbf{H}(\mathbf{p})$ for every $\mathbf{p} \in C$. Using Stokes' theorem, show that

$$
\iint_{S}(\nabla \times \mathbf{G}) \cdot \mathrm{d} \mathbf{A}=\iint_{S}(\nabla \times \mathbf{H}) \cdot \mathrm{d} \mathbf{A} .
$$

(Here, S can be assigned either of its orientations.)
(4) (Fun with the divergence theorem) Let \mathbb{S}^{2} denote the unit sphere centred at the origin,

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

and assign to \mathbb{S}^{2} the outward-facing orientation.
(a) Let \mathbf{F} be the vector field on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=(x, y, z)_{(x, y, z)} .
$$

Compute directly the surface integral of \mathbf{F} over \mathbb{S}^{2}.
(b) Evaluate the integral from part (a) by applying the divergence theorem and computing an appropriate triple integral. Make sure that you obtain the same answer as in (a).
(c) Let \mathbf{L} be the vector field on \mathbb{R}^{3} given by

$$
\mathbf{L}(x, y, z)=\left(y^{543} e^{y^{2}+z^{4}} z^{5234}, e^{x^{562} z^{27}-x^{12} z^{43}}\left(x+z e^{x}\right)^{127}, 1+x^{10} y+24 y^{17} e^{42 y^{3}}\right)_{(x, y, z)} .
$$

Evaluate the surface integral of \mathbf{L} over \mathbb{S}^{2}.
(5) (Setting boundaries I)
(a) Describe the boundaries of the following subsets of \mathbb{R}^{2}, as one or more curves in \mathbb{R}^{2} :
(i) $\mathrm{D}_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+4 y^{2}<4\right\}$.
(ii) $\mathrm{D}_{2}=(0,1) \times(0,2)$.
(iii) $\mathrm{D}_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<1, y>0, y<x\right\}$.
(b) Describe the boundaries of the following surfaces in \mathbb{R}^{3}, as one or more curves in \mathbb{R}^{3} :
(i) $S_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, x>0\right\}$.
(ii) $S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1,-1<z<1\right\}$.
(iii) $S_{3}=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x \in(0,1), y \in(0,2)\right\}$.
(c) Describe the boundaries of the following regions in \mathbb{R}^{3}, as one or more surfaces in \mathbb{R}^{3} :
(i) $V_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}<9\right\}$.
(ii) $\mathrm{V}_{2}=(0,1) \times(0,1) \times(0,1)$.
(iii) $V_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}<1,-1<z<1\right\}$.

(6) (Setting boundaries II)

(a) Suppose you apply Green's theorem to each of the regions D_{i} in Question (5a). Describe the resulting orientation(s) on the boundary of each D_{i} that you would obtain, according to the statement of Green's theorem.
(b) Suppose you apply Stokes' theorem to each of the surfaces S_{i} in Question (5b), where:

- For S_{1}, we use the orientation facing the positive χ-direction.
- For S_{2}, we use the outward-facing orientation.
- For S_{3}, we use the orientation facing the positive z-direction.

Describe the resulting orientation(s) on the boundary of each S_{i} that you would obtain, according to the statement of Stokes' theorem.
(c) Suppose you apply the divergence theorem to each of the regions V_{i} in Question (5c). Describe the resulting orientation(s) on the boundary of each V_{i} that you would obtain, according to the statement of the divergence theorem.
(7) (Second derivative identities)
(a) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function. Show that the curl of the gradient of f vanishes everywhere, that is, show that for any $\mathbf{p} \in \mathbb{R}^{3}$,

$$
[\nabla \times(\nabla \mathrm{f})](\mathbf{p})=(0,0,0)_{\mathbf{p}}
$$

(b) Let \mathbf{F} be a smooth vector field on \mathbb{R}^{3}. Show that the divergence of the curl of \mathbf{F} vanishes everywhere, that is, show that for any $\mathbf{p} \in \mathbb{R}^{3}$,

$$
[\nabla \cdot(\nabla \times \mathbf{F})](\mathbf{p})=0
$$

(8) (Connections to Complex Variables) (Not examinable) Consider the plane \mathbb{R}^{2}, or equivalently, the complex plane \mathbb{C}. Let \mathbb{C} denote the unit circle centred at the origin,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} \simeq\{z \in \mathbb{C}| | z \mid=1\}
$$

and assign to C the anticlockwise parametrisation. Furthermore, let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complexanalytic function, and write f in terms of its components as

$$
f(z)=u(z)+i \cdot v(z), \quad z \in \mathbb{C}
$$

(a) Express the real and imaginary parts of the contour integral of f over C ,

$$
\operatorname{Re} \int_{C} f(z) d z, \quad \operatorname{Im} \int_{C} f(z) d z
$$

as curve integrals of appropriate vector fields over C.
(b) Use Green's theorem to prove Cauchy's theorem on C:

$$
\int_{C} f(z) d z=0
$$

(Hint: Recall that \mathbf{u} and v satisfy the Cauchy-Riemann equations.)
(9) (Green's theorem fail) Let \mathbf{C} be as in Question (8), and let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)_{(x, y)}, \quad(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}
$$

(a) Show that for any $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$,

$$
\partial_{x}\left(\frac{x}{x^{2}+y^{2}}\right)-\partial_{y}\left(-\frac{y}{x^{2}+y^{2}}\right)=0
$$

(b) On the other hand, show that the integral of \mathbf{F} over \mathbf{C} is not zero. Why does this not contradict the statement of Green's theorem? (More specifically, why do Green's theorem and part (a) not imply that the integral of \mathbf{F} over \mathbf{C} is zero?)
(c) (Not examinable) For those taking Complex Variables, can you relate what you saw in parts (a) and (b) to some contour integrals that you have seen?

