This mock paper is purposely slightly harder (but only just) than the actual paper I've written this academic year.

Q1. Let \mathscr{R} be a relation on the set of positive integers:

$$
a \mathscr{R} b \Leftrightarrow \text { either } a \text { divides } b \text {, or } b \text { divides } a
$$

Is this an equivalence relation? If so prove it. If not, explain exactly which axioms it fails to satisfy, by giving an explicit counter-example for each.

Q2. Solve the following set of equations in X and Y in \mathbb{F}_{13} :

$$
\begin{aligned}
& X+4 Y \equiv 17 \quad \bmod 13 \\
& X-2 Y \equiv 6 \quad \bmod 13
\end{aligned}
$$

Q3. (1) Let G be the set of real numbers that are not equal to -1 . Define a binary operation * on G by

$$
a * b=a+b+a b .
$$

Prove that $(G, *)$ is a group.
(2)[Extra for Enthusiasts] Let S be a set consisting of four symbols $\{\boldsymbol{\phi}, \diamond, \diamond, \boldsymbol{\uparrow}\}$. Define a binary operation $*$ on S by the following table which describes (row) $*$ (column):

Is $(S, *)$ a group? Justify your answer.
Q4. Let $(R,+, \times)$ be a ring and 0 denote the identity element with respect to addition + . Prove that $a 0=0 a=0$ for every element a in R.

Q5. Let \mathbb{H} be Hamilton's quaternions, i.e. the set of elements of the form

$$
c 1+c(p) p+c(q) q+c(r) r \in \mathbb{R} 1+\mathbb{R} p+\mathbb{R} q+\mathbb{R} r
$$

where the basis elements $1, p, q$ and r satisfy the multiplicative relations

- $1 p=p 1=p, 1 q=q 1=q, 1 r=r 1=r$,
- $p^{2}=-1, q^{2}=-1, r^{2}=-1$,
- $p q=r, q p=-r$,
- $q r=p, r q=-p$,
- $r p=q, q r=-q$,
together with natural addition and multiplication (prescribed by the relation).
(1) What is the multiplicative inverse of $p+q-r$? (2) Is \mathbb{H} a field? If so, prove it. If not, explain why.

Q6. Find polynomials $f(X)$ and $g(X)$ in $\mathbb{F}_{3}[X]$ such that $\left(X^{8}+[2]\right) f(X)+\left([2] X^{6}+[2]\right) g(X)=$ $\operatorname{gcd}\left(X^{8}+[2],[2] X^{6}+[2]\right)$ in $\mathbb{F}_{3}[X]$.

Q7. Let σ be an element of S_{10} of the form

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 7 & 9 & 6 & 8 & 1 & 5 & 10 & 3 & 2
\end{array}\right)
$$

(1) Write σ in cycle notation. (2) Let $\boldsymbol{\tau}$ be (1)(2867)(3549)(10). Compute $\sigma \circ \boldsymbol{\tau}^{-1}$ in cycle notatioon. (3) Determine the order of σ.

