REVISION NOTES MATH5105 : DIFFERENTIAL AND INTEGRAL ANALYSIS

1. Revision

Let $\Omega \subseteq \mathbb{R}$ be a domain (i.e. an interval or all of \mathbb{R}).
Definition. Let $f: \Omega \rightarrow \mathbb{R}$.
The function f is continuous at $a \in \Omega$ if

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in \Omega| | x-a|<\delta \Longrightarrow| f(x)-f(a) \mid<\varepsilon .
$$

Theorem. If $f: \Omega \rightarrow \mathbb{R}$ is continuous at $a \in \Omega$ and $f(a) \neq 0$ then $f(x) \neq 0$ in a neighbourhood of a that is

$$
\exists \delta>0 \forall x \in D| | x-a \mid<\delta \Longrightarrow f(x) \neq 0 .
$$

Proof. Since f is continuous at a and $b=f(a)$ so that

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in D|0<|x-a|<\delta \Longrightarrow| f(x)-b \mid<\varepsilon .
$$

We choose \qquad so that $|f(x)-b|<\frac{|b|}{2}$ so that by the reverse triangle inequality

$$
\frac{|b|}{2}>|f(x)-b| \geq|b|-|f(x)|
$$

or

$$
|f(x)|>\frac{|b|}{2}>0 .
$$

This shows

$$
\exists \delta>0 \forall x \in D| | x-a \mid<\delta \Longrightarrow f(x) \neq 0 .
$$

Theorem (Boundedness Principle). Let $f:[a, b] \rightarrow \mathbb{R}$ be a real-valued continuous function f on the interval $[a, b]$ then f That is if $m=$ $\inf _{x \in[a, b]} f(x), M=\sup _{x \in[a, b]} f(x)$ then there exists $x_{m}, x_{M} \in[a, b]$ such that $f\left(x_{m}\right)=m$ and $f\left(x_{M}\right)=M$.

Theorem (Intermediate Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a real-valued continuous function f on the interval $[a, b]$. Then f \qquad , that is for any c between $f(a)$ and $f(b)$ there exists an $x \in[a, b]$ such that $f(x)=c$.

2. Differentiation

Definition. Let $x_{0} \in(a, b), f:(a, b) \rightarrow \mathbb{R}$. The \qquad is defined as

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} .
$$

If this limit exists then f is differentiable at x_{0}.

3. The Mean Value Theorem

Theorem (Mean Value Theorem). Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is \qquad and differentiable on (a, b). Then

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

4. Exponential Function

Definition. A differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=f(x) \quad \forall x \in \mathbb{R}
$$

and \qquad is called the exponential function.

Theorem. The exponential function f defined above satisfies $f(x) f(-x)=1$.

Proof. Let $h(x)=f(x) f(-x)$. \qquad , we get

$$
h^{\prime}(x)=f^{\prime}(x) f(-x)+f(x) f^{\prime}(-x)(-1)=0
$$

and hence h is a constant. As $h(0)=f(0) f(0)=1$ so $h(x)=1$.

5. Inverse Functions

Theorem (Inverse Function Theorem). Let f be a on an open interval I and let $J=f(I)$. If f is differentiable at $x_{0} \in I$ and if $f^{\prime}\left(x_{0}\right) \neq 0$ then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Example. The function $f(x)=\sin (x)$ \qquad and it has an inverse g restricted to this domain. The inverse g is usually denoted by $\sin ^{-1}$ or arcsin. Note that $\operatorname{dom}(g)=[-1,1]$. For $y_{0}=\sin x_{0} \in(-1,1)$ where $x_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ then the inverse function formula shows

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{\cos x_{0}} .
$$

Since \qquad we may write

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{\sqrt{1-y_{0}^{2}}}, \quad y_{0} \in(-1,1)
$$

6. Higher Order Derivatives

Theorem. Let $f, g: \Omega \rightarrow \mathbb{R}$ be differentiable for $|x-a|<\varepsilon$ and let $g^{\prime}(x) \neq 0$ for $0<$ $|x-a|<\varepsilon$. If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists and

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Example. (1) We apply L'Hôpital's rule to

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-x}}{x}=\lim _{x \rightarrow 0} \frac{1 / \sqrt{1+2 x}-1 / 2 \sqrt{1+x}}{1}=1-\frac{1}{2}=\frac{1}{2} .
$$

(2) We apply L'Hôpital's rule twice

$$
\lim _{x \rightarrow 0} \frac{\exp (x)-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\exp (x)-1}{2 x}=\lim _{x \rightarrow 0} \frac{\exp (x)}{2}=\frac{1}{2} .
$$

7. Definition of the Riemann Integral

Definition. A partition P of $I=[a, b]$ is a set of points $\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b .
$$

We denote the set of all partitions of I by \mathcal{P}. Let $I_{i}=\left[x_{i-1}, x_{i}\right], \triangle x_{i}=x_{i}-x_{i-1}$ for $i=1,2, \cdots, n$. A partition is call equidistant if $\triangle x_{i}=\frac{b-a}{n}$ is constant.

The partition P^{\prime} is a refinement of P if $P^{\prime} \supset P$.
We define the mesh size of a partition as

$$
\sigma(P)=\max \left\{\triangle x_{i} \mid i=1,2 \cdots, n\right\}
$$

If $P^{\prime} \supseteq P$ is a refinement of P then $\sigma\left(P^{\prime}\right) \leq \sigma(P)$.

Definition. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[a, b]$ We define the lower sum of f with respect to P as

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} m_{i} \triangle x_{i}
$$

where $m_{i}=\inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)$. The upper sum is defined as

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} M_{i} \triangle x_{i}
$$

where $M_{i}=\sup _{x \in\left[x_{i}, x_{i+1}\right]} f(x)$.
Definition (Uniform Continuity). Suppose that $f: \Omega \rightarrow \mathbb{R}$ where I is an interval. We say that f is uniformly continuous on Ω if for every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)$ such that \qquad More compactly this means

$$
\forall \varepsilon>0 \exists \delta>0 \forall x, y \in \Omega| | x-y|<\delta \Longrightarrow| f(x)-f(y) \mid<\varepsilon
$$

Theorem. Suppose that f is continuous on a closed, bounded interval $[a, b]$. Then f is uniformly continuous on $[a, b]$.

8. Properties of the Riemann Integral

Theorem (Mean Value Theorem for Integrals). Let f such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

9. The Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus). Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Define $F(x)=\int_{a}^{x} f(t) d t$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

10. Sequences and Series of Functions

Definition (Uniform Convergence). We say f_{n} converges to f uniformly on Ω if for every $\varepsilon>0 \exists N$ \qquad and all $x \in \Omega$.

Theorem. Consider a sequence of continuous functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ and suppose $\left\{f_{n}\right\}$ uniformly converges to f. Then f is also continuous.

Theorem (Weierstrass M-test). Suppose that there exists a nonnegative sequence of and suppose that $f_{n}: \Omega \rightarrow \mathbb{R}$ satisfies $\left|f_{n}(x)\right|<M_{n}$ for all $x \in \Omega$. Then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly.

Example. Show that the series $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$ converges.

Proof. Note that \qquad . Now the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges so by the Weierstrass test the above series converges uniformly.

11. Power Series

Theorem. For the power series $\sum a_{n} x^{n}$ let

$$
\beta=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \quad \& \quad R=\frac{1}{\beta} .
$$

If $\beta=0$ we set $R=+\infty$ and if $\beta=+\infty$ we set $R=0$. Then
(1) the power series converges for $|x|<R$,
(2) the power series diverse for $\mid x>R$.

Example. Consider the series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

Once again $\beta=1$ and $R=1$ and the series converges at $x=1$ and $x=-1$ so the series has interval of convergence $[-1,1]$.

Example. Recall that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Differentiating term by term we obtain

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}, \quad|x|<1
$$

Similarly integrating term by term

$$
\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}=\int_{0}^{x} \frac{1}{1-t} d t=-\log (1-x)
$$

or

$$
\log (1-x)=-\sum_{n=1}^{\infty} \frac{1}{n} x^{n}, \quad|x|<1
$$

Replacing x by $-x$ we get

$$
\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}
$$

