
REVISION NOTES MATH5105 : DIFFERENTIAL AND INTEGRAL
ANALYSIS

1. Revision

Let Ω ⊆ R be a domain (i.e. an interval or all of R).

Definition. Let f : Ω→ R.

The function f is continuous at a ∈ Ω if

∀ε > 0∃δ > 0∀x ∈ Ω | |x− a| < δ =⇒ |f(x)− f(a)| < ε.

Theorem. If f : Ω → R is continuous at a ∈ Ω and f(a) 6= 0 then f(x) 6= 0 in a
neighbourhood of a that is

∃δ > 0∀x ∈ D | |x− a| < δ =⇒ f(x) 6= 0.

Proof. Since f is continuous at a and b = f(a) so that

∀ε > 0∃δ > 0∀x ∈ D | 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

We choose so that |f(x)− b| < |b|
2

so that by the reverse triangle inequality

|b|
2
> |f(x)− b| ≥ |b| − |f(x)|

or

|f(x)| > |b|
2
> 0.

This shows

∃δ > 0∀x ∈ D | |x− a| < δ =⇒ f(x) 6= 0.

�

Theorem (Boundedness Principle). Let f : [a, b] → R be a real-valued continuous func-
tion f on the interval [a, b] then f That is if m =
infx∈[a,b] f(x),M = supx∈[a,b] f(x) then there exists xm, xM ∈ [a, b] such that f(xm) = m
and f(xM) = M .

Theorem (Intermediate Value Theorem). Let f : [a, b] → R be a real-valued continuous
function f on the interval [a, b]. Then f , that is
for any c between f(a) and f(b) there exists an x ∈ [a, b] such that f(x) = c.
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2. Differentiation

Definition. Let x0 ∈ (a, b), f : (a, b)→ R. The is defined as

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0
.

If this limit exists then f is differentiable at x0.

3. The Mean Value Theorem

Theorem (Mean Value Theorem). Suppose that f : [a, b]→ R is and
differentiable on (a, b). Then

f ′(c) =
f(b)− f(a)

b− a
.

4. Exponential Function

Definition. A differentiable function f : R→ R such that

f ′(x) = f(x) ∀x ∈ R

and is called the exponential function.

Theorem. The exponential function f defined above satisfies f(x)f(−x) = 1.

Proof. Let h(x) = f(x)f(−x). , we get

h′(x) = f ′(x)f(−x) + f(x)f ′(−x)(−1) = 0

and hence h is a constant. As h(0) = f(0)f(0) = 1 so h(x) = 1. �

5. Inverse Functions

Theorem (Inverse Function Theorem). Let f be a on an
open interval I and let J = f(I). If f is differentiable at x0 ∈ I and if f ′(x0) 6= 0 then f−1

is differentiable at y0 = f(x0) and

(f−1)′(y0) =
1

f ′(x0)
.
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Example. The function f(x) = sin(x) and it has an inverse g
restricted to this domain. The inverse g is usually denoted by sin−1 or arcsin. Note that
dom(g) = [−1, 1]. For y0 = sin x0 ∈ (−1, 1) where x0 ∈ (−π

2
, π
2
) then the inverse function

formula shows

g′(y0) =
1

cosx0
.

Since we may write

g′(y0) =
1√

1− y20
, y0 ∈ (−1, 1).

6. Higher Order Derivatives

Theorem. Let f, g : Ω → R be differentiable for |x − a| < ε and let g′(x) 6= 0 for0 <

|x − a| < ε. If limx→a f(x) = limx→a g(x) = 0 and if limx→a
f ′(x)
g′(x)

exists then limx→a
f(x)
g(x)

exists and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Example. (1) We apply L’Hôpital’s rule to

lim
x→0

√
1 + 2x−

√
1− x

x
= lim

x→0

1/
√

1 + 2x− 1/2
√

1 + x

1
= 1− 1

2
=

1

2
.

(2) We apply L’Hôpital’s rule twice

lim
x→0

exp(x)− 1− x
x2

= lim
x→0

exp(x)− 1

2x
= lim

x→0

exp(x)

2
=

1

2
.

7. Definition of the Riemann Integral

Definition. A partition P of I = [a, b] is a set of points {x0, x1, . . . , xn−1, xn} such that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

We denote the set of all partitions of I by P . Let Ii = [xi−1, xi],4xi = xi − xi−1 for
i = 1, 2, · · · , n. A partition is call equidistant if 4xi = b−a

n
is constant.

The partition P ′ is a refinement of P if P ′ ⊃ P .

We define the mesh size of a partition as

σ(P ) = max{4xi | i = 1, 2 · · · , n}

If P ′ ⊇ P is a refinement of P then σ(P ′) ≤ σ(P ).
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Definition. Let f : [a, b]→ R be bounded and P = {x0, x1, · · · , xn} be a partition of [a, b]
We define the lower sum of f with respect to P as

L(f, P ) =
n∑
i=1

mi(xi − xi−1) =
n∑
i=1

mi4xi

where mi = infx∈[xi,xi+1] f(x). The upper sum is defined as

U(f, P ) =
n∑
i=1

Mi(xi − xi−1) =
n∑
i=1

Mi4xi

where Mi = supx∈[xi,xi+1]
f(x).

Definition (Uniform Continuity). Suppose that f : Ω → R where I is an interval. We
say that f is uniformly continuous on Ω if for every ε > 0, there exists δ = δ(ε) such
that More compactly this means

∀ε > 0∃δ > 0∀x, y ∈ Ω | |x− y| < δ =⇒ |f(x)− f(y)| < ε

Theorem. Suppose that f is continuous on a closed, bounded interval [a, b]. Then f is
uniformly continuous on [a, b].

8. Properties of the Riemann Integral

Theorem (Mean Value Theorem for Integrals). Let f
such that ∫ b

a

f(x)dx = f(c)(b− a).

9. The Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus). Assume that f : [a, b]→ R is continuous.
Define F (x) =

∫ x
a
f(t)dt ∫ b

a

f(x)dx = F (b)− F (a).

10. Sequences and Series of Functions

Definition (Uniform Convergence). We say fn converges to f uniformly on Ω if for every
ε > 0∃N and all x ∈ Ω.
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Theorem. Consider a sequence of continuous functions fn : [a, b] → R and suppose {fn}
uniformly converges to f . Then f is also continuous.

Theorem (WeierstrassM -test). Suppose that there exists a nonnegative sequence of
and suppose that fn : Ω→ R satisfies |fn(x)| < Mn for all x ∈ Ω. Then

∑∞
n=1 fn converges

uniformly.

Example. Show that the series
∑∞

n=1
sin(nx)
n2 converges.

Proof. Note that . Now the series
∑∞

n=1
1
n2 converges so by the Weierstrass

test the above series converges uniformly. �

11. Power Series

Theorem. For the power series
∑
anx

n let

β = lim sup
n→∞

|an|1/n & R =
1

β
.

If β = 0 we set R = +∞ and if β = +∞ we set R = 0. Then

(1) the power series converges for |x| < R,
(2) the power series diverse for |x > R.

Example. Consider the series
∞∑
n=1

xn

n2
.

Once again β = 1 and R = 1 and the series converges at x = 1 and x = −1 so the series
has interval of convergence [−1, 1].

Example. Recall that
∞∑
n=0

xn =
1

1− x
.

Differentiating term by term we obtain
∞∑
n=1

nxn−1 =
1

(1− x)2
, |x| < 1.

Similarly integrating term by term
∞∑
n=0

1

n+ 1
xn+1 =

∫ x

0

1

1− t
dt = − log(1− x)
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or

log(1− x) = −
∞∑
n=1

1

n
xn, |x| < 1.

Replacing x by −x we get

log(1 + x) =
∞∑
n=1

(−1)nxn

n
.


