Please complete evaluation survey on QMplus

Game theory

- Decision making when agents/plagers interact.
- Assume agents behave rationally.
- Mary applications in Economics

Game Theory

Example 10.1. Suppose that Rosemary and Colin each have 2 cards, labelled with a 1 and a 2. Each selects a card and then both reveal their selected cards. If the sum s of the numbers on their cards is even, then Rosemary wins and Colin must pay her this s. Otherwise, Colin wins and Rosemary must pay him s.
con represent this information in a payoff matrix. Colin (player ${ }^{2}$)

		1	2
Rosemary (Player 1)	1	$(2,-2)$	$(-3,3)$
	2	$(-3,3)$	$(4,-4)$

Example 12.1. Suppose that Rosemary and Colin are working on a joint project. Each of them can choose to "work hard" or "goof off." Both of them must work hard together to receive a high mark for the project. Both have utility 3 for receiving a high mark utility 1 for goofing off (regardless of what mark they receive) and utility 0 for working hard but not receiving a high mark. Give the payoff matrix for this game.

Colin Cplajer 2

| | | wakhard (w) | goof off (g) |
| :--- | :--- | :--- | :--- | :--- |
| Rosemary (w) work | | | |
| Cord | $(3,3)$ | $(0,1)$ | |
| (player 1) | (g) goof | $(1,0)$ | $(1,1)$ |

$$
\begin{aligned}
& \text { Rosemary's set of strategies } A_{1}=\{\text { work hard, goof off }\} \\
& \text { Colin's set of strategies } A_{2}=\{\text { walk hard, goof off }\} \text {. }
\end{aligned}
$$

$$
\text { egg. } \begin{aligned}
u_{1}(w, g) & =0 \\
u_{2}(g, g) & =1
\end{aligned}
$$

Detn A 2-plujer strategic game is a game with two players
player 1/row player / Rosemary
player 2/cclumn ployer/Colin
The game is specified by gie. choices

- A set of strategies A, for player 1 a set ct strategies A2 fer player 2
- player iss payoff function $U_{1}: A_{1} \times A_{2} \rightarrow \mathbb{R}$
player 2 's payoff function $U_{2}: A_{1} \times A_{2} \rightarrow \mathbb{R}$
i.e. if player 1 plays strategy $a_{1} \in A_{1}$
player 2 ploys strategy $a_{2} \in A_{2}$
then payctt to player 1 is $u_{1}\left(a_{1}, a_{2}\right)$
player 2 is $u_{2}\left(a_{1}, a_{2}\right)$
Remarks
- A pair ct strategies $\left(a_{1}, a_{2}\right)$ with $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$ is called an outcome
- "payoff" is numerical value of happiness of a player from a particular outcome.
- So paycti to any player depends on both on their chaice of strategy and the other player's choice.

A payout matrix for a 2 -player gave is a matrix

- lavs ave labelled by player ils strategies columns playerirz's strategies
- Far a strategy a_{1} (resp. a_{2}) of player 1 (resp-plager 2) the $\left(a_{1}, a_{2}\right)$ entry of the matrix consists of

Rosemary's payoff $u_{1}\left(a_{1}, a_{2}\right)$ followed by Colin's payatt $u_{2}\left(a_{1}, a_{2}\right)$.
Assumption (Principle ot rational choice) In any situation, a player will seek to Maximise their payotit.
We mostly focus an zero-sum games.
Detn A 2-player strategic game is called a zero-sum game if for each cutcone $\left(a_{1}, a_{2}\right) \in A_{1} \times A_{2}$, we have $u_{1}\left(a_{1}, a_{2}\right)=-u_{2}\left(a_{1}, a_{2}\right)$ (i.e. payctts of the two players sum to zero) we simplity payott matrix by only writing payoff to the row player (Rosemary)
zest gave sum gave Colin (plage rs

Rosemary

	1	2
1	$(2,-2)$	$(-3,3)$
2	$(-3,3)$	$(4,-4)$

Simplified payoth matrix

	1	2
1	2	-3
2	-3	4

One more example

Example 10.3. Rosemary and Colin each have a $£ 1$ and a $£ 2$ coin. They each select one of them and hold it in their hand, then Colin calls out "even" or "odd" and they reveal their coins. Let s be the sum of the values of the coins. If Colin correctly guessed whether s was even or odd, he wins both coins. Otherwise, Rosemary wins both coins.

What are the strategies for each player?
Write down payoff matrix?
Is this a zera-sum game? Yes

$$
\begin{array}{l|llll}
& & (1, \text { odd }) & (2, \text { od }) & (1, \text { even }) \\
\hline \text { Rosemary } & (2, \text { even }) \\
2 & (1,-1) & (-1,1) & (-1,1) & (2,-2) \\
\hline & (-2,2) & (2,-2) & (1,-1) & (-2,2)
\end{array}
$$

	colin			
Rosemary	1	1	-1	-1

In simplified payctr matrix

- Rcsemang wants outcomes with high value
- Colin wants antcones with (on vale.

Colin

(A is simplified payoff matrix)
Detn Suppose we hare a 2-plager zero-sum game where $R=\left\{r_{1}, \ldots, r_{k}\right\}$ is the set of Rosemary's strategies $C=\left\{C_{1}, \ldots, C_{l}\right\}$ is the set of Colin's strategies

Security level of $r_{p}=$ min entry in $p^{\text {th }}$ row of A

$$
=\min _{j} a_{p_{j}} \quad \begin{gathered}
\text { (worst payoff for } \\
\text { Rosemary it she plans } \\
r_{p} \text {) }
\end{gathered}
$$

Security level of $C_{q}=$ max entry in $q^{\text {th }}$ column of A

$$
\begin{aligned}
&=\max _{j} a_{i q} \quad \begin{array}{l}
\text { (tells us wast payylt } \\
\text { for Colin it he plays } \\
\text { Cq with a minus sign) }
\end{array} \\
&
\end{aligned}
$$

Best secwity level for Rosemary is the highest ot her security levels
Best securing level for Colin is the lowest ot his securing levels.

Colin

		$c_{1} c_{2}$
	r_{1}	
		$100 \rightarrow-5 c_{\downarrow}$
	r_{2}	$\boxed{8} \leftarrow 20$

In example, playing accoring to security levels is "unstable": colin has on incentive to change his strategy.
In fact every cutcone is "unstable" This motivates idea of Nash equilibrium.

Intarmally, a pune Nash equilibrium is a pair of strategies (r_{i}, c_{j}) (i.e. an cutcone) Whale neither player has an incentive to change their strategy unilaterally.

Detn Pure Nash equilibrium in zero-sum games Consider a zero-sum game with payott matrix $A=a_{i j}$ where $R=\left\{v_{11} \ldots, v_{k}\right\}$ is set ct Roseman's strategies and $C=\left\{c_{1}, \ldots, c_{l}\right\}$ is set of C olin's strategies
A pair of strategies $\left(r_{i}, c_{j}\right)$ is a Nash equilibrium if

$$
a_{i j} \geqslant a_{i^{\prime} j} \text { for all } i^{\prime}=1, \gg k
$$

and $a_{i j} \leqslant a_{i j}$ for all $j^{\prime}=1, \cdots l$
i.e. $a_{i j}$ is the largest entry in its column and smallest entry in its ran

Iso Rosemary cannot incneaul her pandit by choosing a different strategy from si assuming Colin stays at C_{j}

Colin connect inacaue his payctt by Choosing a ditterent strategy $\operatorname{trom} C_{i}$ assuming Rosemary stays of ri.

Detn Pure Nash equilibrium in zero-sum games Consider a zero-sum game with payott matrix $A=a_{i j}$ where $R=\left\{v_{1}, \ldots, r_{k}\right\}$ is set ct Reseman's strategies and $C=\left\{c_{1}, \ldots, c_{l}\right\}$ is set at C^{\prime} inn's strategies $^{\prime}$

A pair of strategies $\left(r_{i}, c_{j}\right)$ is a Nash equilibrium if

$$
a_{i j} \geqslant a_{i_{j}^{\prime}} \text { for all } i^{\prime}=1, \cdots k
$$

and $a_{i j} \leqslant a_{i j}$ for all $j^{\prime}=1, \cdots l$
i.e. $a_{i j}$ is the largest entry in its column and smallest entry in its roar
Iso Rosemary cannot incueal her payoff by choosing a different strategy from ri assuming Colin stays at C_{j}

Coli connect inacase his payct by Choosing a ditterent strategy from C_{i} assuming Roalmay stays at ri.

Example 10.4. Suppose we seek a pair of strategies $\left(r_{i}, c_{j}\right)$ that form a Nash equilibrium for the game with the following payoff matrix:

	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{1 2}$	$\mathbf{1 1}$
	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	2	-3	-3	12	-5
$\mathbf{- 5}$					
r_{2}	2	7	2	9	11
r_{3}	-1	4	0	1	0
r_{4}	-3	5	1	2	-3
r_{1}			$\mathbf{1}$		

Can you find a Nash equilibrium? How many con you find?

The Suppose we a 2-plager zero-sum game.
Let u_{r}^{*} be best (highest) secwity level for row player u_{c}^{*} be best (lowest) security level for column ploger
The gave a Nash equilibrium it and only it

$$
u_{r}^{*}=u_{c}^{x} .
$$

Pf Let $A=a_{i j}$ be (simplified) payctf matrix.
For any strategy rp for row plages and any strategy la for column player
security level ot $r_{p} \leqslant a_{p q} \leqslant$ security level of c_{q}

	c_{q}
r_{p}	$a_{p q}$

Supposal ri has best (highest) security level (for row player
ci has best (lowest) security level for column player

So $u_{r}^{*} \leqslant u_{c}^{*}$

Suppose $u_{r}^{*}=u_{c}^{*}$
Then tran (2), we know

$$
\underset{r_{i}}{\text { security level of }}=a_{i j}=\begin{gathered}
\text { security level } \\
\text { of } c_{j}
\end{gathered}
$$

So $a_{i j}$ is smallest entry in its raw and largest entry in its column using et ot Security level
so $\left(r_{i}, C_{j}\right)$ is a Nash equilibrium

For converse, suppose $\left(r p, C_{q}\right)$ is a Nash equilibrium
$\left.\begin{array}{r}\text { Then } a_{p q} \text { is smallest entry in its row } \\ \text { and largest entry in its column }\end{array}\right) \begin{aligned} & \text { defy of } \\ & \text { Nash } \\ & \text { equibrium }\end{aligned}$
i.e. $a_{p q}=$ searity level of $r_{p} \leq u_{r}^{x}$
$a_{p q}=$ security level of $c_{q} \geqslant u_{c}^{x}$
So $u_{c}^{*} \leqslant u_{r}^{x}$
But know $u_{r}^{*} \geqslant u_{c}^{*}$ by (2)
So $u_{r}^{*}=u_{c}^{*}$

Example matching pennies
Example 10.5. Rosemary and Colin each have a 1 p coin. Simultaneously, they place their coins on the table with either heads or tails showing. If the coins match, Rosemary wins $£ 1$ from Colin. Otherwise, Colin wins $£ 1$ from Rosemary.

Zero-sum gave with pact matrix

		h	t	Colin
	Rosemary	h	1	-1
	-1			
	t	-1	1	-1

Has no pare Nash equilibrium (check using dote ct using security levels with previous the)
If Rosemary plays any strategy (h / t) consistently then be entually colin plays apposite strategy (h / t) and win.
Rosemary should pick her strategy random by to prevent this!

Deter (Mixed strategy)
Let $S=\left\{s_{1}, \ldots, s n\right\}$ be the set of strategies for a player. A mixed strategy is a vector $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ satistying $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{k}=1$
Think of x_{i} as the probability of playing s_{i}.
we write $\Delta(s)$ for set of all mixed strategies (infinitely $\left.\begin{array}{c}m a n y\end{array}\right)$ Each $s_{i} \in S$ is called a pure strategy

Colin

Recemany
$R=\varepsilon h, t)$ is set ct Rosemary's pure strategies $C=\{h, t\}$ is set ot Colin's pure strategies
e.g. $r=\left(\frac{1}{3}, \frac{2}{3}\right)$ is a mixed strategy for Rosemary $c=\left(\frac{1}{6}, \frac{5}{6}\right)$ is a mixed strategy fer c col bn,
What is expected payolt to Reremony it they use there mixed strategies?
$\begin{aligned} & \text { Expected payoff } \\ & \text { to Rosemary }\end{aligned}=\sum_{\text {outcomes }}\left(P(\right.$ cutcone $) \times \begin{array}{l}\text { pougott to Rosemary } \\ \text { from cutcone }\end{array}$

$$
\begin{aligned}
= & \mathbb{P}(h, h) \times 1+\mathbb{P}(h, t) \times(-1) \\
& +\mathbb{P}(t, h) \times(-1)+(P(t, t) \times 1 \\
= & \frac{1}{3} \times \frac{1}{6} \times 1+\frac{1}{3} \times \frac{5}{6} \times(-1) \\
& +\frac{2}{3} \times \frac{1}{6} \times(-1)+\frac{2}{3} \times \frac{5}{6} \times 1 \\
= & \left(\frac{1}{3}, \frac{2}{3}\right)\left(\begin{array}{l}
1 \\
-1 \\
5
\end{array}\right)\binom{1 / 6}{5}
\end{aligned}
$$

$=r^{\top} A \subseteq$ where A is the payctt matrix.

For a general 2-plager zero-5um game with $R=\left\{r_{1}, \ldots, r_{k}\right\}$ set ct Rosemary's strategies $C=\left\{c_{1}, \ldots, c_{l}\right\}$ aet co Colin's Strategies $A=a_{i j}$ payout matrix.
It Rosemary plays mixed strategy $x \in A(R)$ Colin plays mixed strategy $y \in A(C)$ then expected payoff to Rosemary

$$
\begin{aligned}
=\sum_{\left(r_{i}, c_{j}\right)} \mathbb{P}\left(\text { cutcone is }\left(r_{i j} c_{j}\right)\right) a_{i j} & =\sum_{\left(r_{i}, c_{j}\right)} x_{i} y_{j} a_{i j} \\
& =x^{\top} A \underline{y}
\end{aligned}
$$

expected pact to Colin $=-\underline{x}^{T} A \underline{y}$
Intuitively the security level of x is

$$
\min _{y \in \Delta(c)} x^{\top} A y
$$

i.e, least expected payctt to Rosemay if she plays x
Next theaem shows thou minimising over all $\underline{y} \in A(C)$ is the save as minimising over Colin's pure strategies

