Assignment 4
Solutions

Assignment 4
Prove or dispose that $g \cdot g$ is $R I \Rightarrow g$ is $R I$
In The lecture notes we have $g b R I \Rightarrow g^{2}$ is $R I^{*}$ so we are asking whether the converse to is twee? Lots of statements made which are just ut true. function bounded \therefore RI $X \quad$-bounded is needed to function RI $\Rightarrow f$ continuous? x f not continuous $\Rightarrow f$ not RI ? x g^{2} is RI $\Rightarrow g$ is RI?

TRUE or FALSE

Consider $g:[0,1] \rightarrow \mathbb{R} \quad g(x)= \begin{cases}-1 & x \text { rational }\end{cases}$
\{1 x irrational

- Consider a partition $P=\left\{x_{i}\right\}_{0}^{n}$ on $[0,1]$
- In any interval $\left[x_{i-1}, x_{i}\right], \exists$ irrational \& rationed
- real numbers

$$
\begin{aligned}
& \therefore \quad m_{i}=\inf g(x)=-1, \quad M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} g(x)=+1 \\
& \quad\left[x_{i-1}, x_{i}\right] L(g, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}(1)\left(x_{i}-x_{i-1}\right)=-(b-a) \neq 0 \\
& U(g, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}(1)\left(x_{i}-x_{i-1}\right)=(b-a) \neq 0 \\
& \therefore U(g, P)-L(g, P)=2(b-a)>0 \quad b \neq a . \quad \forall P \\
& \therefore \text { Given } \varepsilon>0, \varepsilon=(b-a), \nexists P \text { s. } 1 . U(g, P)-L(g, P)<\varepsilon
\end{aligned}
$$

\therefore RIC fails
$\therefore g$ not Riemann integrable.
$G(x)=\int_{a}^{x^{2}} h(t) d t$ does $G^{\prime}(x)$ exist, and
if so a wat is its value?
Method 2

$$
\begin{aligned}
& G^{\prime}(x)=\lim _{k \rightarrow 0} \frac{G(x+k)-G(x)}{k} \\
& =\lim _{k \rightarrow 0} \frac{1}{k}\left[\int_{a}^{(x-t k)^{2}} h(t) d t-\int_{a}^{x^{2}} h(t) d t\right]
\end{aligned}
$$

Method 1
FTC: $H(y)=\int_{a}^{y} h(t) d t$

then $H^{\prime}(y)=h(y)$.
Now $G(x)=H\left(x^{2}\right)=H(y(x))$ composed $f(n$.
ie. $G(x)=H(y)$ and $y(x)=x^{2}$

$$
=\lim _{k \rightarrow 0} \frac{1}{k} \int_{x^{2}}^{(x+k)^{2}} h(t) d t, h \text { continuous }
$$

$H^{\prime}(y)=h(y), y^{\prime}(x)=2 x$.
$\therefore G^{\prime}(x)=H^{\prime}(y) y^{\prime}=h\left(x^{2}\right) \cdot 2 x$
$=\lim _{k \rightarrow 0} h\left(c_{k}\right)(2 x+k)$, where $c_{k} \rightarrow x^{2}$, as $k \rightarrow 0$
But h is contin cons $\therefore h\left(c_{k}\right) \rightarrow h\left(x^{2}\right)$, as $k \rightarrow 0$.
$\therefore \frac{G(x+k)-G(x)}{k} \rightarrow h\left(x^{2}\right) \cdot 2 x$ as $k \rightarrow 0$
1.e. $G^{\prime}(x)$ exists and $G^{\prime}(x)=h\left(x^{2}\right) \cdot 2 x$

