
Statistical Modeling I
Practical in R – Output

Practical in R – Output

In this practical, we will work with the dataset on presidential elections in US in year 2000
(on the https://electionlab.mit.edu/data is possible to found other data). We will look at how
to select the best model by using the AIC and other measures.

In the file USElection.csv, we have different variables of interest, such as the fraction of the
state’s total counted vote for George W. Bush, which is the response variable. In the file, we
find the following eleven columns for each of the US states:

• Y = %Bush which is the percentage of votes for G.W. Bush;

• X1 = UnEmpR which is the unemployment rate;

• X2 = Pop is the total population of the state;

• X3 = %Male is the percentage of male;

• X4 = %Pop > 65 is the percentage of population older than 65;

• X5 = %NonMetr is the percentage of rural (nonmetro) population;

• X6 = %PopPov is the percentage of population below the poverty level;

• X7 = NuHouse is the total number of households;

• X8 = %Inc > 50 is the percentage of house income bigger than $50000;

• X9 = %Inc > 75 is the percentage of house income bigger than $75000;

• X10 = %Inc > 100 is the percentage of house income bigger than $100000.

1. First of all we need to load the data in R:

> data <- read.csv("USElection.csv")
>
> Y<- data[,1]
> X1 <- data[,2]
> X2 <- data[,3]
> X3 <- data[,4]
> X4 <- data[,5]
> X5 <- data[,6]
> X6 <- data[,7]
> X7 <- data[,8]
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> X8 <- data[,9]
> X9 <- data[,10]
> X10 <- data[,11]

After defining it, we fit the full model for the response variable by including all the
explanatory variables

> mody <- lm(Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10)
> summary(mody)

Call:
lm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 +

X10)

Residuals:
Min 1Q Median 3Q Max

-15.7014 -3.1110 0.9113 3.4952 11.0512

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.334e+01 1.025e+02 -0.520 0.60579
X1 -2.423e+00 1.368e+00 -1.772 0.08404 .
X2 5.796e-08 6.994e-07 0.083 0.93437
X3 2.581e+00 1.889e+00 1.367 0.17928
X4 -1.388e+00 6.468e-01 -2.146 0.03803 *
X5 2.133e-01 6.700e-02 3.184 0.00281 **
X6 1.982e-01 6.003e-01 0.330 0.74305
X7 7.250e-07 2.037e-06 0.356 0.72384
X8 -1.529e-01 7.852e-01 -0.195 0.84662
X9 1.227e+00 1.971e+00 0.623 0.53707
X10 -4.333e+00 2.400e+00 -1.805 0.07854 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.473 on 40 degrees of freedom
Multiple R-squared: 0.6903,Adjusted R-squared: 0.6128
F-statistic: 8.914 on 10 and 40 DF, p-value: 1.738e-07

> anova(mody)
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

X1 1 58.66 58.66 1.3999 0.243720
X2 1 95.92 95.92 2.2891 0.138145
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X3 1 1483.08 1483.08 35.3930 5.571e-07 ***
X4 1 4.80 4.80 0.1146 0.736780
X5 1 1339.52 1339.52 31.9668 1.448e-06 ***
X6 1 137.02 137.02 3.2699 0.078087 .
X7 1 88.12 88.12 2.1030 0.154808
X8 1 350.41 350.41 8.3624 0.006167 **
X9 1 41.17 41.17 0.9825 0.327547
X10 1 136.59 136.59 3.2596 0.078536 .
Residuals 40 1676.13 41.90
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Thus once defined the full model, we can look further at the plots of the standardized
residuals. We run two plots: the standardized residuals versus fitted values (left panel)
and the QQ plot (right panel).

> stdresfull <-rstandard(mody)
> fitsfull<-fitted(mody)
>
> plot(fitsfull,stdresfull, main="Std res vs fits, full")
> qqnorm(stdresfull, main="Q-Q Plot, full")
> qqline(stdresfull)

Left panel of Figure 1.1 shows no reason to doubt that the variance is constant, while
there are three values that show negative standardized residuals. Moving to the right
panel, we have heavy left tails, thus we cast some doubts on the normality assumption.
For looking at the normality assumption, we have a look at the Shapiro-Wilk test, which
gives:

> shapiro.test(stdresfull)

Shapiro-Wilk normality test

data: stdresfull
W = 0.95133, p-value = 0.03581

The p-value is smaller than the significance level, thus we reject the null hypothesis of
normality assumption of the residuals.

2. From the summary statistics of the linear regression, we see that few variables are statis-
tically significant, like X4 (percentage of population older than 65) and X5 (percentage
of rural population), while X1 (unemployment rate) and X10 (percentage of house in-
come bigger than $100000) are statistically significant but only at 10%. Moving to
the Anova table, we have that few of the variables are significant in the presence of the
other variables: X3 (% percentage of male), X5 (percentage of rural population) and X8
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Figure 1.1: Plot of standardized residuals versus fitted values (left) and QQ plot (right) for the
model with all the explanatory variables.

(percentage of house income bigger than $50000), while X6 (percentage of population
below poverty level) and X10 (percentage of house income bigger than $100000) are
statistically significant but only at 10%.

Moving to the overall regression, the F statistic and relatively p-value indicate that the
overall regression is highly significant (F = 8.91 and p-value = 1.73 × 10−7). For the
adjusted R2, we have a value of 61.28%, which shows a lot of variation in the data not
explained by all these variables.

3. In the first case, we define the full model with all the explanatory variables and then use
the backwards elimination procedure:

> reduced.model <- step(mody, direction="backward")
Start: AIC=200.11
Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X2 1 0.29 1676.4 198.12
- X8 1 1.59 1677.7 198.16
- X6 1 4.57 1680.7 198.25
- X7 1 5.31 1681.4 198.27
- X9 1 16.24 1692.4 198.60
<none> 1676.1 200.11
- X3 1 78.30 1754.4 200.44
- X1 1 131.55 1807.7 201.97
- X10 1 136.59 1812.7 202.11
- X4 1 192.90 1869.0 203.67
- X5 1 424.86 2101.0 209.63
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Step: AIC=198.12
Y ~ X1 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10

Df Sum of Sq RSS AIC
- X8 1 1.46 1677.9 196.17
- X6 1 4.89 1681.3 196.27
- X9 1 15.96 1692.4 196.60
<none> 1676.4 198.12
- X3 1 83.52 1759.9 198.60
- X7 1 118.35 1794.8 199.60
- X1 1 131.64 1808.1 199.98
- X10 1 137.44 1813.9 200.14
- X4 1 192.72 1869.1 201.67
- X5 1 426.96 2103.4 207.69

Step: AIC=196.17
Y ~ X1 + X3 + X4 + X5 + X6 + X7 + X9 + X10

Df Sum of Sq RSS AIC
- X6 1 10.18 1688.0 194.47
- X9 1 25.92 1703.8 194.95
<none> 1677.9 196.17
- X3 1 105.99 1783.9 197.29
- X7 1 116.98 1794.9 197.60
- X1 1 134.21 1812.1 198.09
- X10 1 137.45 1815.3 198.18
- X4 1 191.44 1869.3 199.68
- X5 1 463.32 2141.2 206.60

Step: AIC=194.47
Y ~ X1 + X3 + X4 + X5 + X7 + X9 + X10

Df Sum of Sq RSS AIC
- X9 1 16.13 1704.2 192.96
<none> 1688.0 194.47
- X3 1 99.83 1787.9 195.41
- X7 1 128.20 1816.2 196.21
- X10 1 129.72 1817.8 196.25
- X1 1 159.35 1847.4 197.07
- X4 1 206.24 1894.3 198.35
- X5 1 487.54 2175.6 205.41

Step: AIC=192.96
Y ~ X1 + X3 + X4 + X5 + X7 + X10
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Df Sum of Sq RSS AIC
<none> 1704.2 192.96
- X7 1 121.90 1826.1 194.48
- X3 1 123.55 1827.7 194.53
- X1 1 186.93 1891.1 196.27
- X4 1 205.60 1909.8 196.77
- X5 1 472.51 2176.7 203.44
- X10 1 658.58 2362.8 207.62

Thus in this case, the best model is the one that includes X1; X3; X4; X5; X7 and X10

with an AIC equal to 192.96.

On the other hand, we define the null model, which is the model with only the intercept
and then we apply the forward fit model:

> modyn <- lm(Y ~ 1)
> aic.forward.model <- step(modyn, scope=~X1 + X2 + X3 + X4 + X5 +
X6 + X7 + X8 + X9 + X10, direction="forward")
Start: AIC=239.89
Y ~ 1

Df Sum of Sq RSS AIC
+ X10 1 2165.90 3245.5 215.81
+ X5 1 1919.41 3492.0 219.55
+ X9 1 1822.81 3588.6 220.94
+ X8 1 1555.76 3855.7 224.60
+ X3 1 1523.81 3887.6 225.02
+ X4 1 232.61 5178.8 239.65
<none> 5411.4 239.89
+ X2 1 107.39 5304.0 240.86
+ X7 1 66.31 5345.1 241.26
+ X1 1 58.66 5352.8 241.33
+ X6 1 0.36 5411.1 241.88

Step: AIC=215.81
Y ~ X10

Df Sum of Sq RSS AIC
+ X3 1 874.89 2370.6 201.79
+ X4 1 615.32 2630.2 207.09
+ X5 1 539.36 2706.2 208.54
+ X6 1 148.70 3096.8 215.42
<none> 3245.5 215.81
+ X9 1 84.27 3161.3 216.47
+ X8 1 71.54 3174.0 216.68
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+ X1 1 30.97 3214.6 217.32
+ X7 1 8.49 3237.0 217.68
+ X2 1 5.26 3240.3 217.73

Step: AIC=201.79
Y ~ X10 + X3

Df Sum of Sq RSS AIC
+ X5 1 274.362 2096.3 197.52
+ X4 1 91.232 2279.4 201.79
<none> 2370.6 201.79
+ X1 1 44.884 2325.8 202.82
+ X8 1 20.492 2350.1 203.35
+ X9 1 6.968 2363.7 203.64
+ X6 1 0.515 2370.1 203.78
+ X2 1 0.426 2370.2 203.78
+ X7 1 0.087 2370.6 203.79

Step: AIC=197.52
Y ~ X10 + X3 + X5

Df Sum of Sq RSS AIC
+ X4 1 117.355 1978.9 196.58
+ X7 1 93.620 2002.7 197.19
+ X2 1 82.674 2013.6 197.47
<none> 2096.3 197.52
+ X1 1 68.807 2027.5 197.82
+ X9 1 23.099 2073.2 198.96
+ X8 1 17.487 2078.8 199.09
+ X6 1 9.085 2087.2 199.30

Step: AIC=196.58
Y ~ X10 + X3 + X5 + X4

Df Sum of Sq RSS AIC
+ X1 1 152.833 1826.1 194.48
+ X7 1 87.804 1891.1 196.27
+ X2 1 78.533 1900.4 196.52
<none> 1978.9 196.58
+ X6 1 42.094 1936.8 197.49
+ X9 1 31.527 1947.4 197.76
+ X8 1 30.767 1948.2 197.78

Step: AIC=194.48
Y ~ X10 + X3 + X5 + X4 + X1
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Df Sum of Sq RSS AIC
+ X7 1 121.902 1704.2 192.96
+ X2 1 115.359 1710.7 193.16
<none> 1826.1 194.48
+ X9 1 9.835 1816.2 196.21
+ X6 1 5.217 1820.9 196.34
+ X8 1 2.076 1824.0 196.43

Step: AIC=192.96
Y ~ X10 + X3 + X5 + X4 + X1 + X7

Df Sum of Sq RSS AIC
<none> 1704.2 192.96
+ X9 1 16.1324 1688.0 194.47
+ X8 1 4.5332 1699.7 194.82
+ X6 1 0.3919 1703.8 194.95
+ X2 1 0.0756 1704.1 194.96

Also in this case, we arrive at the same best model as before, thus the model that in-
cludes X10; X3; X5; X4; X1 and X7 with an AIC equal to 192.96.
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