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Question 1. [10 marks] Find all complex solutions z to the equation

z3 = −3
√

3

and write them in the form z = a + bi for a, b ∈ R.

Solution We work in Euler’s notation. The complex number −3
√

3 = −3
√

3 + 0i is
written as reiθ by taking r = | − 3

√
3| = 3

√
3 and cos θ = −3

√
3/r = −1 so θ = π, up

to multiples of 2π. Write z = seiϕ where s = |z| and ϕ = arg(z). Then we have

s3e3iϕ = (seiϕ)3 = 3
√

3eiπ

whence
s3 = 3

√
3 and 3ϕ = π + 2kπ for some integer k,

that is s = (3
√

3)1/3 =
√

3 and

ϕ ∈
{
· · · ,

π

3
, π,

5π

3
, · · ·

}
where the three values written out suffice to give the four distinct solutions

z =
√

3eiπ/3, z =
√

3eiπ and z =
√

3e5iπ/3.

In standard form these are

z =

√
3

2
+

3
2

i, z = −
√

3, and z =

√
3

2
− 3

2
i.

Question 1 is standard, appearing with different constants in the notes and
coursework.

Question 2. [12 marks]

(a) Define what it means for A = {A1, A2, . . .} to be a partition of a set X. [3]

(b) Let A be a partition of X. Prove that

R = { (x, y) ∈ X : there exists i such that x ∈ Ai and y ∈ Ai }

is an equivalence relation on X. [6]

(c) Write down a partition of Z into three parts, exactly two of which are infinite. [3]
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Solution (a) A partition of X is a collection {A1, A2, . . .} of subsets of X, called its
parts, having the following properties:

(i) Ai 6= ∅ for all i;

(ii) Ai ∩ Aj = ∅ for all i 6= j;

(iii) A1 ∪ A2 ∪ · · · = X.

[This is as given in the lecture notes. It implicitly assumes the set of parts is
countable; for exam purposes I don’t care about that restriction.]
(b)

• x and x lie in the same part of the partition, so R is reflexive.

• If x and y lie in the same part of the partition, then so do y and x; so R is
symmetric.

• Suppose that x and y lie in the same part Ai of the partition, and y and z lie in
the same part Aj. Then y ∈ Ai and y ∈ Aj, so y ∈ Ai ∩ Aj; so we must have
Ai = Aj (since different parts are disjoint). Thus x and z both lie in Ai. So R is
transitive.

(c) One answer is {{a ∈ Z : a < 0}, {0}, {a ∈ Z : a > 0}}.
Of Question 2, parts (a,b) are bookwork and part (c) is unseen.

Question 3. [13 marks]

(a) Define the divisibility relation | on the set of natural numbers. [2]

(b) A relation R on a set X is said to be antisymmetric if the following condition
holds: For all elements a, b ∈ X, if a R b and b R a both hold then a = b. Prove
that | is antisymmetric. [5]

(c) Define the least common multiple of two nonzero natural numbers. [2]

(d) Compute the least common multiple of 336 = 24 · 3 · 7 and 180 = 22 · 32 · 5.
Include an explanation of your method. [If you cite facts from lectures or
coursework, you need not prove them.] [4]
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Solution (a) | is the set

{(a, b) ∈N2 : there exists k ∈N such that b = ka}.

(b) Let a and b be natural numbers so that a | b and b | a. By definition, this implies
there are natural numbers k and ` so that b = ka and a = `b. Substituting the second
equation into the first shows a = `(ka). Assume as one of two cases that a 6= 0. Then
1 = `k, and the only way to factorise 1 as a product of two natural numbers is 1 · 1, so
k = ` = 1, which implies that a = b. In the other case, a = 0, we have b = k0 = 0, so
a = b in this case as well.
(c) The natural number m is a common multiple of a and b if both a | m and b | m. It
is the least common multiple if it is a common multiple which is less than any other
common multiple.
(d) For each prime p, the exponent of p in the prime factorisation of lcm(a, b) is the
maximum of the exponents of p appearing in the factorisations of a and of b.
Therefore the lcm sought in this question is 24 · 32 · 51 · 71 = 5040.

Of Question 3, parts (a,c) are bookwork, (b) is coursework, and (d) appeared in
lecture with different numbers.

Question 4. [24 marks]

(a) Write down the multiplicative inverse law for a ring R. [Pay attention to the
quantifiers (“for all”, “there exists”) and other conditions in the law.] [3]

(b) Compute the multiplicative inverse of [23]43 in Z43. Show your working. [14]

(c) Find a multiplicative inverse of the matrix
[
[15]43 [14]43
[4]43 [11]43

]
in M2(Z43).

[7]
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Solution (a) For each a ∈ R which is not equal to 0, there exists an element b ∈ R
such that ab = ba = 1.
(b) We use the extended Euclidean algorithm.

20 = 43− 1 · 23
3 = 23− 1 · 20
2 = 20− 6 · 3
1 = 3− 1 · 2
0 = 2− 2 · 1

Then

1 = 3− 1 · 2
= 3− 1 · (20− 6 · 3)
= −1 · 20 + 7 · 3
= −1 · 20 + 7 · (23− 1 · 20)
= 7 · 23− 8 · 20
= 7 · 23− 8 · (43− 1 · 23)
= −8 · 43 + 15 · 23.

So [23]−1
43 = [15]43.

(c) Because Z43 is a field, the familiar adjoint formula for inverting 2× 2 matrices
holds: if A is the given matrix, then

A−1 = (det A)−1
[
[11]43 −[14]43
−[4]43 [15]43

]
.

Here det(A) = [15]43[11]43 − [14]43[4]43 = [15 · 11− 14 · 4]43 = [109]43 = [23]43, whose
inverse we have just computed to be [15]43. Thus

A−1 = [15]43

[
[11]43 −[14]43
−[4]43 [15]43

]
=

[
[165]43 [−210]43
[−60]43 [225]43

]
=

[
[36]43 [5]43
[26]43 [10]43

]
.

Of question 4, part (a) is bookwork, part (b) a standard algorithm, and being able to
do the computation of part (c) is implicit in some coursework questions.

Question 5. [12 marks]

(a) Give the names of all the axioms that must hold in a field. You do not have to
write out what the axioms say. [4]

(b) Write down the definition of the field C of complex numbers. You should
include a specification of the elements of C and of its addition and
multiplication operations. [You may assume the definition of R is understood.] [4]

(c) Using your definition in part (b), prove that C satisfies the commutative law for
multiplication. [You may assume that R is a field.] [4]
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Solution (a) A field must satisfy the closure, associative, identity, inverse, and
commutative laws for addition; the closure, associative, identity, inverse, and
commutative laws for multiplication; and the distributive law and nontriviality law.
(b) The field C of complex numbers has set of elements

{a + bi : a, b ∈ R}

and addition and mutiplication operations defined by

(a + bi) + (c + di) := (a + c) + (b + d)i,
(a + bi) · (c + di) := (ac− bd) + (ad + bc)i.

(c) We must prove that
xy = yx

for complex numbers x = a + bi and y = c + di. The left hand side is

(a + bi)(c + di) = (ac− bd) + (ad + bc)i

while the right hand side is

(c + di)(a + bi) = (ca− db) + (cb + da)i

which are equal, by the commutative laws for the real numbers.

Question 5 is wholly bookwork.

Question 6. [14 marks]

(a) Let R be a ring. Give the definition of polynomial in x with coefficients in R. [2]

(b) Define the degree of a polynomial. [2]

(c) Let f (x) and g(x) be nonzero polynomials in R[x], of degrees m and n,
respectively. Prove that deg( f (x) g(x)) = m + n. [5]

(d) Give a counterexample to the multiplicative inverse law for the ring R[x] of
polynomials in x with real coefficients. Explain why your counterexample
works. [5]
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Solution (a) Let R be a ring and x a formal symbol. A polynomial in x with
coefficients in R is an expression

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0

where a0, a1, . . . , an−1, an are elements of R.
(b) The degree of the polynomial f (x) above, if f (x) 6= 0, is the greatest i such that
ai 6= 0.
[We leave the degree of the zero polynomial undefined.]
(c) By the assumption on their degrees, f and g can be written out as

f = amxm + · · ·+ a1x + a0,
g = bnxn + · · ·+ b1x + b0

where a0, . . . , am and b0, . . . , bn are complex numbers with am 6= 0 and bn 6= 0.
By definition the product f g is the sum of all products of a term of f and a term of g.
A term of f has the form aixi for some natural number i, and a term of g the form bjxj

for some natural number j; the product of these two is aibjxi+j. Since i ≤ m and j ≤ n,
the exponent in the product is at most m + n, and it can only equal m + n if i = m and
j = n. Therefore the only term of f g with an xm+n in it is ambnxm+n, and there are no
terms with higher exponents of x. Since am and bn are nonzero, their product is also
nonzero. That is, xm+n has a nonzero coefficient in f g, and all higher powers of x
have zero coefficients (they don’t appear). This proves deg( f g) = m + n.
(d) The polynomial x has no inverse in R[x]. The zero polynomial cannot be its
inverse, and if f ∈ R[x] is nonzero then deg(x f ) = 1 + deg( f ) by part (d), which
cannot equal 0 = deg(1).

Of Question 6, parts (a,b,d) are bookwork and part (c) is coursework.

Question 7. [15 marks]

(a) Define what it means for a set G with a binary operation ∗ to be a group.
Include statements of any axioms you invoke, not just their names. [3]

(b) Let K be the set of integers with the operation ◦ defined by

x ◦ y = x + y + 1.

Prove that K with the operation ◦ is a group. [6]

(c) Let H be a subset of a group (G, ∗). Define what it means for H to be a
subgroup of G. [2]

(d) Specify a proper subgroup of the additive group Z6. The Cayley table of Z6 is
provided below. [4]

+ [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
[0]6 [0]6 [1]6 [2]6 [3]6 [4]6 [5]6
[1]6 [1]6 [2]6 [3]6 [4]6 [5]6 [0]6
[2]6 [2]6 [3]6 [4]6 [5]6 [0]6 [1]6
[3]6 [3]6 [4]6 [5]6 [0]6 [1]6 [2]6
[4]6 [4]6 [5]6 [0]6 [1]6 [2]6 [3]6
[5]6 [5]6 [0]6 [1]6 [2]6 [3]6 [4]6
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Solution (a) (G, ∗) is a group if the following axioms are satisfied:

Closure law: for all a, b ∈ G, we have a ∗ b ∈ G.

Associative law: for all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Identity law: there is an element e ∈ G (called the identity) such that
a ∗ e = e ∗ a = a for any a ∈ G.

Inverse law: for all a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e, where e is
the identity. The element b is called the inverse of a, written a∗.

(b) We must prove the group axioms.
Closure. We must check that a ◦ b is actually an element of G, if a and b are elements
of G. This is clear: if a and b are integers, so is a + b + 1.
Associativity. We must show that

(a ◦ b) ◦ c = a ◦ (b ◦ c).

The left side is
(a ◦ b) ◦ c = (a + b + 1) ◦ c = a + b + 1 + c + 1

and the right side is

a ◦ (b ◦ c) = a ◦ (b + c + 1) = a + b + c + 1 + 1,

which are equal.
Identity. We must find an element e ∈ G such that a ◦ e = a = e ◦ a for all a ∈ G. It is
easy to see by solving the resulting equation that e = −1 works, for then

a ◦ e = a + (−1) + 1 = a

and
e ◦ a = (−1) + a + 1 = a

for any a ∈ G.
Inverses. We must show that for any a ∈ G, there is a b ∈ G such that
a ◦ b = e = b ◦ a, where e = −1 is the identity element we found in the previous part.
Again, solving the equations that result quickly leads to identifying b = −a− 2 as the
inverse of a. This works because

a ◦ b = a + (−a− 2) + 1 = −1 = e

and
b ◦ a = (−a− 2) + a + 1 = −1 = e.

(c) H is a subgroup of G if is it a nonempty subset closed under ∗ and taking inverses
(with respect to ∗).
(d) There are three proper subgroups: {[0]6}, {[0]6, [3]6}, and {[0]6, [2]6, [4]6}. (Z6
itself is a subgroup but not proper.)

Of Question 7, parts (a,c) are bookwork, (b) is coursework and (d) is strictly speaking
unseen.
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End of Paper.
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