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Model solutions

Question 1.

(a) Let g be the element(
1 2 3 4 5 6 7 8 9 10
6 2 10 5 4 9 1 7 3 8

)
of S10, written in two-line notation. Write g in cycle notation. [3]

(b) What are the fixed points of g? [2]

(c) Find an element h of S10 such that

h ◦ g = (1 8 10 2 7 3 6 4),

and write it in two-line notation. [6]

(d) Does S10 contain an element of order 30? If so, specify one. If not, explain
why. [4]

Solution (a) g = (1 6 9 3 10 8 7)(4 5).
(b) 2 is the only fixed point of g.
(c) If we name the displayed eight-cycle k, then the element we seek is h = kg−1.
We invert g by turning its cycles backwards, giving
g−1 = (1 7 8 10 3 9 6)(4 5). We can compute kg−1 and write the result in
cycle notation directly: to produce the cycle containing 1 we write down 1,
kg−1(1), kg−1(kg−1(1)), etcetera, until we recover 1 again; then we repeat this
process for each element not yet encountered. This yields
kg−1 = (1 3 9 4 5)(2 7 10 6 8). In two-line notation that is(

1 2 3 4 5 6 7 8 9 10
3 7 9 5 1 8 10 2 4 6

)
.
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(d) The order of an element is the lcm of the lengths of its cycles. Since
30 = 5 · 3 · 2, an element that will suffice is (1 2 3 4 5)(6 7 8)(9 10).
Parts (a,b,c) of Question 1 are standard computations. Part (d) is unseen, though
computing the order of a permutation is equally standard.

Question 2.

(a) State the Fundamental Theorem of Algebra. [3]

(b) Find all solutions to the complex polynomial equation

z4 + 8− 8
√

3i = 0,

and write them in standard form a+ bi. [9]

Solution (a) Here is how it’s phrased in the notes:

Let a0, a1, · · · , an−1 be complex numbers. The polynomial equation

zn + an−1z
n−1 + · · ·+ a1z + a0 = 0

has at least one solution inside C.

Also acceptable are more allegro phrasings, like “Every non-constant complex
polynomial has a zero” (but non-constant is essential), and assertions that there are
n roots counted with multiplicity (but mention of the multiplicity is essential).
(b) We know a method for taking roots of complex numbers, so we convert the
equation to that form

z4 = −8 + 8
√

3i

We will use the modulus-argument form z = reiθ for z, so the first task is to put
−8 + 8

√
3i in this form. If −8 + 8

√
3i = seiφ, then s is the modulus,

s = | − 8 + 8
√

3i| =
√

(−8)2 + (8
√

3)2 = 16,

implying eiφ = (−8 + 8
√

3i)/16 = −1/2 + 3
√

2i. Using the Argand diagram, or
equating coefficients in the equation cosφ+ i sinφ = −1/2 + 3

√
2i, we see that

we may take φ = 2π/3. (Or φ = −4π/3, vel sim.)
Therefore the equation to be solved is

(reiθ)4 = 16ei·2π/3,

i.e.
r4ei·4θ = 16ei·2π/3, ,

These two quantities are equal when r4 = 16 and 4θ = 2π/3 + 2πk for some
integer k. The first equation implies r = 4

√
16 = 2. The second implies that
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θ = π/6 + πk/2, and since eiθ has period 2π we only need to take four values of θ,
namely

θ =
π

6
, θ =

2π

3
, θ =

7π

6
, θ =

5π

3
,

corresponding to k = 0, 1, 2, and 3 respectively. (If you prefer to take θ in the range
(−π, π] that’s okay too; you would use k = −2,−1, 0, 1.) So the four solutions are

z = 2ei·π/6 = 2(cos
π

6
+ i sin

π

6
) = 2(

√
3

2
+

1

2
i) =
√

3 + i

and

z = 2ei·2π/3 = 2(cos
2π

3
+ i sin

2π

3
) = (−1

2
+

√
3

2
i) = −1 +

√
3i

and

z = 2ei·7π/6 = 2(cos
7π

6
+ i sin

7π

6
) = 2(−

√
3

2
− 1

2
i) = −

√
3− i

and

z = 2ei·5π/3 = 2(cos
5π

3
+ i sin

5π

3
) = 2(

1

2
−
√

3

2
i) = 1−

√
3i.

Part (a) of Question 2 is bookwork, and part (b) is a standard algorithm.

Question 3.

(a) Give a complete definition of what it means for a set G with an operation ◦ to
be a group. [3]

(b) Write out the Cayley table for the multiplicative group Z×8 . [3]

(c) Does the additive group Z30 have a subgroup of order 4? Specify one if so, or
explain why if not. [4]

Solution (a) G is a group under ◦ iff it satisfies the following axioms:

(G0) Closure law: for all a, b ∈ G, we have a ◦ b ∈ G.

(G1) Associative law: for all a, b, c ∈ G, we have a ◦ (b ◦ c) = (a ◦ b) ◦ c.

(G2) Identity law: there is an element e ∈ G (called the identity) such that
a ◦ e = e ◦ a = a for any a ∈ G.

(G3) Inverse law: for all a ∈ G, there exists b ∈ G such that a ◦ b = b ◦ a = e,
where e is the identity. The element b is called the inverse of a, written a′.

Omitting the closure law is fine too.
(b)

[1]8 [3]8 [5]8 [7]8
[1]8 [1]8 [3]8 [5]8 [7]8
[3]8 [3]8 [1]8 [7]8 [5]8
[5]8 [5]8 [7]8 [1]8 [3]8
[7]8 [7]8 [5]8 [3]8 [1]8

c© Queen Mary, University of London (2016) Turn Over



Page 4 MTH4104 (2016)

(c) There is no such subgroup, by Lagrange’s theorem: if G is such a subgroup of
Z30, then 4 = |G| | |Z30| = 30, which is false.
Part (a) is bookwork. Parts (b,c) are familiar types of exercise.

Question 4.

(a) State the names of the axioms that must hold of a set R with operations +
and · in order for R to be a ring. [3]

(b) Define what it means for an element of a ring with identity to be a unit. [2]

(c) Is 2− 2t a unit in the ring D of pseudocomplex numbers? Justify your
answer. [4]

(d) Let a be an element of a ring R with identity such that an = 0 for some
natural number n. Prove that 1− a is a unit in R. [5]

Solution (a) A ring must satisfy the associative, identity, inverse and
commutative laws for addition, the associative law for multiplication, and the
distributive law. (Mentioning the closure laws too is acceptable, although they are
implicit in the definition of the operations.)
(b) An element x of R is a unit if it has a multiplicative inverse.
(c) 2− 2t is not a unit. Suppose it had a multiplicative inverse a+ bt where
a, b ∈ R. Expanding

(2− 2t)(a+ bt) = 1 + 0t

gives
2a− 2b+ (−2a+ 2b)t = 1 + 0t

which, by extracting coefficients, yields the system

2a− 2b = 1

−2a+ 2b = 0.

This is an inconsistent system, as adding the two equations yields 0 = 1. So the
inverse cannot exist.
(d) An inverse of 1− a is 1 + a+ · · ·+ an−1, since

(1− a)(1 + a+ · · ·+ an−1) = 1 + a+ · · ·+ an−1− a− a2− · · ·− an = 1− an = 1

and similarly

(1 + a+ · · ·+ an−1)(1− a) = 1− a+ a− a2 + · · ·+ an−1 − an = 1− an = 1.

Parts (a,b) of question 4 are bookwork. Part (c) is an exercise with parallels in
lecture. Part (d) is unseen.

Question 5.
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(a) Give complete definitions of the terms

(i) Cartesian product of two sets; [2]

(ii) relation on a set; [2]

(iii) equivalence relation on a set. [3]

(b) Write down examples of:

(i) a relation which is transitive but not reflexive; [2]

(ii) an equivalence relation on {1, 2, 3, 4} with exactly three equivalence
classes. [2]

(c) Let X and Z be any two sets, and f : X → Z any function. Prove that

{(x, y) ∈ X2 : f(x) = f(y)}

is an equivalence relation on X . [6]

Solution (a) The Cartesian product of two sets X and Y is the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

A relation on a set X is a subset of X ×X . A relation R on X is an equivalence
relation if it satisfies the following three properties:

reflexivity: (x, x) ∈ R for all x ∈ X;

symmetry: (x, y) ∈ R implies that (y, x) ∈ R;

transitivity: (x, y) ∈ R and (y, z) ∈ R together imply that (x, z) ∈ R.

(b) The relation > on the integers is transitive but not reflexive. One equivalence
relation on {1, 2, 3, 4} with three equivalence classes is

{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1), (4, 4)},

the restriction of ≡3 to that set. (There are of course other possibilities in each
case.)
(c) Reflexivity. For any x ∈ X , f(x) = f(x) is true, so xRx.
Symmetry. Let x, y ∈ X satisfy xRy, so f(x) = f(y). Equality is symmetric so
this implies f(y) = f(x), which is yRx.
Transitivity. Let x, y, z ∈ X satisfy xRy and yRz, so f(x) = f(y) and
f(y) = f(z). Then

f(x) = f(y) = f(z)

so xRz.
Part (a) of Question 5 is bookwork. Part (b) is not seen as such, but the examples
are intended to be familiar ones. Part (c) is unseen but a proof which runs along
very standard lines; it would be a very easy exemplar of the class if not for the
greater generality.
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Question 6.

(a) Using the Euclidean algorithm, show that gcd(68, 183) = 1. [6]

(b) Does [68]183 have a multiplicative inverse in the ring Z183? Find it if so, or
explain why if not. [8]

(c) Prove that Zm is not a field if m is a composite number. (You may assume
that Zm is a ring, and that its operations are well-defined, but do not use other
facts about Zm without proof.) [6]

Solution (a) We carry out the algorithm, dividing and extracting remainders until
we see a remainder of zero:

183 = 2 · 68 + 47

68 = 1 · 47 + 21

47 = 2 · 21 + 5

21 = 4 · 5 + 1

5 = 5 · 1 + 0.

The last non-zero remainder, here 1, is the gcd yielded by the algorithm.
(b) If b is an integer such that 68b+ 183k = 1 for some integer k, then [b]183 will be
the inverse sought. The extended Euclidean algorithm guarantees that b exists, and
indeed produces it. We run the algorithm by solving for 1 in terms of 68 and 183
with iterated substitution of the equations from part (a):

1 = 21− 4 · 5
= 21− 4 · (47− 2 · 21) = −4 · 47 + (1 + 2 · 4) · 21 = −4 · 47 + 9 · 21

= −4 · 47 + 9 · (68− 1 · 47) = 9 · 68− (4 + 9 · 1) · 47 = 9 · 68− 13 · 47

= 9 · 68− 13(183− 2 · 68) = −13 · 183 + (9 + 13 · 2) · 68 = −13 · 183 + 35 · 68.

So our inverse is [b]183 = [35]183.
(c) Let m = ab where a, b > 1 are integers. If [a]m is to have an inverse [c]m, this
implies that [a]m[c]m = [ac]m is the same congruence class as [1]m, i.e. that
ac ≡m 1, i.e. that ac− km = 1 for some k. But a divides the left side of this
equality and not the right, which is a contradiction.
Parts (a,b) of Question 6 are standard algorithms. Part (c) is bookwork.

Question 7. Let T be the set of real numbers. Consider T as an algebraic structure
with addition operation ⊕ and multiplication operation � given by

x⊕ y = min{x, y},
x� y = x+ y − 2.

(a) Name the identity element in T for the operation �, and prove the inverse
law for �. [4]
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(b) Prove the distributive law in T . [Hint: consider two cases x ≤ y, x > y.] [3]

(c) Prove that the set T with addition ⊕ and multiplication � is not a ring. [5]

Solution (a) The identity element for � is 2, because

x� 2 = x+ 2− 2 = x

for all real x (and similarly for 2� x). The inverse of any real number x under � is
4− x, because

x · (4− x) = x+ 4− x− 2 = 2

(and similarly for (4− x)� x). This proves the inverse law for �.
(b) Since � is commutative (by inspection), it is sufficient for us to check one of
the two distributive laws. So let x, y, z ∈ T . We must prove the equality of

(x⊕ y)� z = min{x, y}+ z − 2

and
(x� z)⊕ (y � z) = min{x+ z − 2, y + z − 2}.

We take two cases according to whether x ≤ y or x > y. In the first case, adding
z + 2 to both sides of the inequality gives x+ z − 2 ≤ y + z − 2, so the two
displayed quantities both come out to x+ z − 2. By similar reasoning, in the
second case both displayed quantities are y + z − 2. In either event, they are equal.
(c) T is not a ring because it fails to satisfy the additive identity law. Indeed, there
can be no additive identity element e, because

e⊕ (e+ 1) = min{e, e+ 1} = e

is not equal to e+ 1.
Question 7 is wholly unseen. Various examples of proving and disproving laws in
number systems have been seen, but none have had quite this flavour.

End of Paper.
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