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Model solutions

Question 1.

(a) Give the definition of a partition of a set X. [3]

(b) Let {A1,A2, . . .} be a partition of a set X, and R the relation

{ (x, y) ∈ X2 : there exists j such that x ∈ A j and y ∈ A j }.

Prove that R is an equivalence relation. [6]

Solution (a) A partition of X is a collection {A1,A2, . . .} of subsets of X having
the following properties:

• Ai , ∅ for all i;

• Ai∩A j = ∅ for all i , j;

• A1∪A2∪· · · = X.

(b) We must prove that this relation is reflexive, symmetric, and transitive.

• x and x lie in the same part of the partition, so R is reflexive.

• If x and y lie in the same part of the partition, then so do y and x; so R
is symmetric.

• Suppose that x and y lie in the same part Ai of the partition, and y and
z lie in the same part A j. Then y ∈ Ai and y ∈ A j, so y ∈ Ai∩A j; so we
must have Ai =A j (since different parts are disjoint). Thus x and z both
lie in Ai. So R is transitive.
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Thus R is an equivalence relation.
Question 1 is bookwork.

Question 2.

(a) Prove that [65]186 has a multiplicative inverse in the ring Z186. [6]

(b) Compute this multiplicative inverse. [8]

(c) How many of the elements ofZ186 have multiplicative inverses? Justify
your answer. [6]

Solution (a) By a theorem from lectures, [65]186 has a multiplicative inverse
if and only if gcd(65,186) = 1. One can prove this by factoring, but since we
will need the extended Euclidean algorithm for part (b), we embark on that
here. Taking remainders, we calculate

186 = 2 ·65+56
65 = 1 ·56+9
56 = 6 ·9+2
9 = 4 ·2+1
2 = 2 ·1+0,

so the greatest common divisor is 1 and the inverse exists.
(b) Reversing the algorithm,

1 = 9−4 ·2
= 9−4(56−6 ·9) = −4 ·56+25 ·9
= −4 ·56+25(65−56) = 25 ·65−29 ·56
= 25 ·65−29(186−2 ·65) = −29 ·186+83 ·65

and [65]−1
186 = [83]186.

(c) This number is Euler’s totient function evaluated at 186= 2 ·3 ·31, namely
φ(186) = (2−1)(3−1)(31−1) = 60.
Question 2 is a standard computation, exampled in coursework and in lec-
tures with different constants.

Question 3. Let f be the permutation (1 10 3 9 7 4)(2)(5 11 8)(6) in S11, which
is written in cycle notation.

(a) Write f in two-line notation. [3]

(b) Let g be the element(
1 2 3 4 5 6 7 8 9 10 11
2 8 5 1 6 4 11 9 7 10 3

)
of S11, written in two-line notation. Determine (g f )−1, and write your
answer in cycle notation. [6]

(c) Write down an element of S11 of order 21. [4]
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Solution (a)

f =
(

1 2 3 4 5 6 7 8 9 10 11
10 2 9 1 11 6 4 5 7 3 8

)
(b) We first compute g f . The result can be written down directly in cycle
notation: to produce the cycle containing 1 we write down 1, g f (1), g f (g f (1)),
etcetera, until we recover 1 again; then we repeat this process for each element
not yet encountered. This yields g f = (1 10 5 3 7)(2 8 6 4)(9 11). The inverse
is computed by reversing all cycles, so (g f )−1 = (1 7 3 5 10)(2 4 6 8)(9 11).
(c) The order of an element is the lcm of the lengths of its cycles. Since
21 = 7 ·3, an element that will suffice is (1 2 3 4 5 6 7)(8 9 10)(11).
Parts (a,b) of Question 3 are standard computations. Part (c) is unseen,
though computing the order of a permutation is equally standard.

Question 4.

(a) State the definition of the complex number eiθ, whereθ is a real number. [2]

(b) Prove that eiθ
·eiφ = ei(θ+φ) for all real numbers θ and φ. [4]

(c) Prove by mathematical induction, or otherwise, that for all integers
n > 1,

cos(1)+ cos(2)+ · · ·+ cos(n−1) =
cos(n)− cos(n−1)

2cos(1)−2
−

1
2
. [9]

Solution (a) eiθ = cosθ+ isinθ.
(b) The left hand side is

(cosθ+isinθ)(cosφ+ isinφ)= cosθcosφ−sinθsinφ+i(cosθsinφ+sinθcosφ).

Using trigonometric sum formulae, this is

cos(θ+φ)+ isin(θ+φ)

which is the right hand side.
(c) We give the proof by induction. Recognition as the real part of a geometric
series is also possible.
The base case is n= 1, at which the left hand side is an empty sum, evaluating
to 0, which is also the evaluation 1

2 −
1
2 of the right hand side.

For the inductive hypothesis, let P(n) be the identity to be proved for all n.
Assume P(k) is true; we wish to show P(k+ 1). It is enough to prove the
equation resulting from subtracting P(k) from P(k+1), which is

cos(k) =
cos(k+1)− cos(k)− (cos(k)− cos(k−1))

2cos(1)−2
.
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It is equivalent to show that

2cos(k)cos(1) = cos(k+1)+ cos(k−1),

as this implies the equation above upon subtracting 2cos(k) from each side
and then dividing both sides by the real number 2cos(1)−2, which is nonzero.
This last equation is seen to be true on expanding the right hand side using
angle sum formulae:

cos(k+1)+ cos(k−1) = cos(k)cos(1)− sin(k)sin(1)+ cos(k)cos(−1)− sin(k)sin(−1)
= 2cos(k)cos(1)

because cos is an even function and sin an odd one. This completes the
inductive step and thus the proof.
Parts (a,b) of Question 4 are bookwork. Part (c) is unseen.

Question 5.

(a) Let R be a ring. Prove that −(ab) = (−a) ·b for any elements a,b ∈ R. [6]

(b) Let R be a ring, and define the relation | on R so that, if a and b are
elements of R, then a | b if and only if b = ra for some r ∈ R. Must the
relation | be reflexive? symmetric? transitive? Prove your assertions. [6]

Solution (a) We know by a lemma proved in lectures that 0b = 0 for any
b ∈ R. I will make use of this here.
The defining property of the element −a, given by the additive inverse law,
is

a+ (−a) = 0.

Multiplying by b yields

0 = 0b = (a+ (−a))b = ab+ (−a)b

using distributivity and our lemma about multiplication by 0. The result
now follows by adding the additive inverse of ab to both sides:

−(ab) = −(ab)+0 = −(ab)+ ab+ (−a)b = (−a)b.

(b) The relation | need not be reflexive, notionally because rings without
identity exist. For instance, 2 - 2 in the ring 2Z.
The relation | is scarcely ever symmetric. For instance, in any ring with
identity, 1 | 0 but 0 - 1.
The relation | must be transitive. Suppose a | b and b | c, that is, b = ra and
c = sb for some r,s ∈ R. Then c = s(ra) = (sr)a by associativity, implying a | c.
Question 5(a) is coursework. Question 5(b) is unseen, though the same
question over the ring Z is bookwork.
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Question 6. Let S be the subset of M2(C) consisting of matrices of the form(
α β
−β̄ ᾱ

)
.

(a) Prove that S is closed under addition and multiplication. [4]

(b) Prove that S satisfies the multiplicative inverse law. You may assume

that
(
1 0
0 1

)
is the multiplicative identity in S. [6]

(c) Prove that S is not a field. [6]

Solution (a) The sum of two arbitrary elements
(
α β
−β̄ ᾱ

)
and

(
γ δ
−δ̄ γ̄

)
of S

is (
α+γ β+δ

−β+δ α+γ

)
which is visibly in S. Their product is(

αγ−βδ̄ αδ+βγ̄
−β̄γ− ᾱδ̄ −β̄δ+ ᾱγ̄

)
=

(
αγ−βδ̄ αδ+βγ̄

−αδ+βγ̄ αγ−βδ̄

)
which is also in S.

(b) Suppose α and β are not both 0, and write q =
(
α β
−β̄ ᾱ

)
. Then

r :=
1

|α|2+ |β|2

(
ᾱ −β
β̄ α

)
is in S, and one computes

qr = rq =
1

|α|2+ |β|2

(
αᾱ+ββ̄ 0

0 αᾱ+ββ̄

)
=

(
1 0
0 1

)
.

(Of course, r is also the inverse of q within M2(C).)
(c) S is not a field because its multiplication is not commutative. For instance,

the matrices
(

i 0
0 −i

)
and

(
0 1
−1 0

)
both lie in S and fail to commute:(

i 0
0 −i

)(
0 1
−1 0

)
=

(
0 i
i 0

)
which is unequal to (

0 1
−1 0

)(
i 0
0 −i

)
=

(
0 −i
−i 0

)
.

Question 6 is unseen in this form, though there is a coursework question
etablishing that S is isomorphic as a ring to the quaternions.
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Question 7.

(a) Define what it means for a set G with an operation ◦ to be a group. [3]

(b) Give an example of two finite groups which have the same order but
are not isomorphic. [6]

(c) Let R be a ring with identity. Prove that the set R× of units of R, with
the operation of multiplication, is a group. [6]

Solution (a) G is a group under ◦ iff it satisfies the following axioms:

(G0) Closure law: for all a,b ∈ G, we have a◦b ∈ G.

(G1) Associative law: for all a,b,c ∈ G, we have a◦ (b◦ c) = (a◦b)◦ c.

(G2) Identity law: there is an element e ∈ G (called the identity) such that
a◦ e = e◦ a = a for any a ∈ G.

(G3) Inverse law: for all a ∈ G, there exists b ∈ G such that a ◦ b = b ◦ a = e,
where e is the identity. The element b is called the inverse of a, written
a′.

(b) S3 has order 3! = 6, as does the additive groupZ6, but the latter is abelian
and the former is not, so they cannot be isomorphic.
(c)We must prove the laws from part (a).
Suppose that u−1 and v−1 are the inverses of u and v. Then

(uv)(v−1u−1) = u(vv−1)u−1 = u1u−1 = uu−1 = 1,
(v−1u−1)(uv) = v−1(u−1u)v = v−11v = v−1v = 1,

so v−1u−1 is the inverse of uv. Thus the closure law holds for R×.
The associative law for R× is inherited from R, of which it is a subset.
The equation 1 · 1 = 1 shows that 1 is the inverse of 1, so that 1 ∈ R×. This
element 1 is still an identity in R× ⊆ R, so R× satisfies the identity law.
If u ∈R×, the equation u−1u= uu−1 = 1, which holds because u−1 is the inverse
of u, also shows that u is the inverse of u−1. Thus u−1

∈ R×, inside which it is
still the inverse of u, showing that R× satisfies the inverse law.
Question 7 is bookwork.

End of Paper.
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