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Question 1.
(a) Give the definition of a partition of a set X. [3]
(b) Let {A1,A>,...} be a partition of a set X, and R the relation
{(x,y) € X?: there exists j such that x € Ajand y €A}
Prove that R is an equivalence relation. [6]
Solution (a) A partition of X is a collection {A1,A», ...} of subsets of X having
the following properties:
o A; #0 forall i
e AinAj=0foralli# j;
e AJUAYU---=X.
(b) We must prove that this relation is reflexive, symmetric, and transitive.
e x and x lie in the same part of the partition, so R is reflexive.

e If x and y lie in the same part of the partition, then so do y and x; so R
is symmetric.

e Suppose that x and y lie in the same part A; of the partition, and y and
z lie in the same part Aj. Then ye€ A;and y € A]-, so Y € A; ﬂA]'; SO we
must have A; = A; (since different parts are disjoint). Thus x and z both
lie in A;. So R is transitive.
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Thus R is an equivalence relation.
Question 1 is bookwork.

Question 2.
(a) Prove that [65]13¢ has a multiplicative inverse in the ring Zg. [6]
(b) Compute this multiplicative inverse. [8]

(c) How many of the elements of Zg; have multiplicative inverses? Justify
your answer. [6]

Solution (a) By a theorem from lectures, [65]13¢ has a multiplicative inverse
if and only if gcd(65,186) = 1. One can prove this by factoring, but since we
will need the extended Euclidean algorithm for part (b), we embark on that
here. Taking remainders, we calculate

186 =2-65+56
65=1-56+9
56=6-9+2

9=4-2+1
2=2-1+40,

so the greatest common divisor is 1 and the inverse exists.
(b) Reversing the algorithm,
1=9-4-2
=9-4(56-6-9)=—-4-56+25-9
=—4-56+25(65-56) =25-65-29-56
=25-65-29(186—-2-65) = —29-186 + 83 - 65
and [65]1_816 = [83]186-
(c) This number is Euler’s totient function evaluated at 186 =2-3-31, namely
$(186) = (2—1)(3-1)(31 1) = 60.
Question 2 is a standard computation, exampled in coursework and in lec-
tures with different constants.

Question 3. Let f be the permutation (110397 4)(2)(5 11 8)(6) in S11, which
is written in cycle notation.

(a) Write f in two-line notation. [3]
(b) Let g be the element

123456 7 89 10 11
2851641197 10 3

of S11, written in two-line notation. Determine (gf )~1, and write your
answer in cycle notation. [6]

(c) Write down an element of Sq; of order 21. [4]
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Solution (a)
(1 234 5 67 89 10 11

f_102911164573 8
(b) We first compute gf. The result can be written down directly in cycle
notation: to produce the cycle containing 1 we write down 1, gf(1), gf(gf(1)),
etcetera, until we recover 1 again; then we repeat this process for each element
not yet encountered. This yields gf = (11053 7)(2 8 6 4)(9 11). The inverse
is computed by reversing all cycles, so (g f )" 1=(173510)(2468)(911).
(c) The order of an element is the lcm of the lengths of its cycles. Since
21 =7-3, an element that will sufficeis (123456 7)(8 9 10)(11).

Parts (a,b) of Question 3 are standard computations. Part (c) is unseen,
though computing the order of a permutation is equally standard.

Question 4.
(a) State the definition of the complex number e, where 0 is a real number. [2]
(b) Prove that ' - ei® = €/(®+9) for all real numbers 0 and Q. [4]

(c) Prove by mathematical induction, or otherwise, that for all integers
nz=1,

cos(1) +cos(2) +---+cos(n—1) = cos(2nc)o—s(clo)s£nz— D_ % [9]

Solution (a) ¢ = cos @ +isin6.
(b) The left hand side is

(cosO+isinO)(cosp+ising) = cos O cos—sinOsing +i(cos Osind+sinOcos ).
Using trigonometric sum formulae, this is
cos(0 + @) +isin(0 + )

which is the right hand side.

(c) We give the proof by induction. Recognition as the real part of a geometric
series is also possible.

The base case is n = 1, at which the left hand side is an empty sum, evaluating
to 0, which is also the evaluation % - % of the right hand side.

For the inductive hypothesis, let P(1) be the identity to be proved for all #.
Assume P(k) is true; we wish to show P(k+1). It is enough to prove the
equation resulting from subtracting P(k) from P(k + 1), which is

cos(k+1) — cos(k) — (cos(k) — cos(k — 1))

cos(k) = 2cos(1)—-2
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It is equivalent to show that
2cos(k)cos(1) = cos(k+1) +cos(k—1),

as this implies the equation above upon subtracting 2 cos(k) from each side
and then dividing both sides by the real number 2 cos(1) -2, which is nonzero.
This last equation is seen to be true on expanding the right hand side using
angle sum formulae:

cos(k+ 1)+ cos(k—1) = cos(k) cos(1) —sin(k) sin(1) + cos(k) cos(—1) — sin(k) sin(—1)
= 2cos(k) cos(1)

because cos is an even function and sin an odd one. This completes the
inductive step and thus the proof.
Parts (a,b) of Question 4 are bookwork. Part (c) is unseen.

Question 5.
(a) Let R be a ring. Prove that —(ab) = (—a) - b for any elements a,b € R. [6]

(b) Let R be a ring, and define the relation | on R so that, if 2 and b are
elements of R, then a | b if and only if b = ra for some r € R. Must the
relation | be reflexive? symmetric? transitive? Prove your assertions.  [6]

Solution (a) We know by a lemma proved in lectures that 0b = 0 for any
b € R. I will make use of this here.
The defining property of the element —a, given by the additive inverse law,
is

a+(—a)=0.

Multiplying by b yields
0=0b=(a+(-a)b=ab+(-a)b

using distributivity and our lemma about multiplication by 0. The result
now follows by adding the additive inverse of ab to both sides:

—(ab) = —(ab) +0 = —(ab) +ab+ (—a)b = (—a)b.

(b) The relation | need not be reflexive, notionally because rings without
identity exist. For instance, 2 1 2 in the ring 2Z.

The relation | is scarcely ever symmetric. For instance, in any ring with
identity, 1|0 but 0 1 1.

The relation | must be transitive. Suppose a|b and b |c, that is, b = ra and
c = sb for some 7,s € R. Then ¢ = s(ra) = (sr)a by associativity, implying a | c.
Question 5(a) is coursework. Question 5(b) is unseen, though the same
question over the ring Z is bookwork.
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Question 6. Let S be the subset of M(C) consisting of matrices of the form

a p
— B al’
(a) Prove that S is closed under addition and multiplication. [4]

(b) Prove that S satisfies the multiplicative inverse law. You may assume

that ((1) (1)) is the multiplicative identity in S. [6]

(c) Prove that S is not a field. [6]

Solution (a) The sum of two arbitrary elements (_ozﬁ_ g) and (_7/5 ;) of S

is
a+y p+06
—-p+6 a+y
which is visibly in S. Their product is
ay =6 adb+py\ _ ay—p6  ad+py
—By—adé —po+ay) \-ads+py ay-pd
which is also in S.

(b) Suppose a and g are not both 0, and write g = (_oc_ p ) Then

p a
el
laP+IBP\P a
isin S, and one computes

1 faa+pp 0 )\ (10
T e\ 0 aa+pp)T0 1)

(Of course, r is also the inverse of g within M;(C).)
(c) Sisnot a field because its multiplication is not commutative. For instance,

the matrices (6 E)z) and (_01 (1)) both lie in S and fail to commute:

b o o= )
[ ollo 5)-(5 %)

Question 6 is unseen in this form, though there is a coursework question
etablishing that S is isomorphic as a ring to the quaternions.

which is unequal to
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Question 7.
(a) Define what it means for a set G with an operation o to be a group. [3]

(b) Give an example of two finite groups which have the same order but
are not isomorphic. [6]

(c) Let R be a ring with identity. Prove that the set R* of units of R, with
the operation of multiplication, is a group. [6]

Solution (a) Gis a group under o iff it satisfies the following axioms:
(GO) Closure law: for all a,b € G, we haveaob € G.
(G1) Associative law: for all a,b,c € G, we haveao(boc)=(aob)oc.

(G2) Identity law: there is an element e € G (called the identity) such that
aoe=cog=aqaforanyacG.

(G3) Inverse law: for all a € G, there exists b € G such thataob=boa=e¢,
where e is the identity. The element b is called the inverse of a, written
a’.
(b) Sz has order 3! = 6, as does the additive group Z, but the latter is abelian
and the former is not, so they cannot be isomorphic.
(c)We must prove the laws from part (a).
Suppose that u~! and v~! are the inverses of u and v. Then

(uv)(v"lu"l) = u(vv_l)u_l —ulul=uyu = 1,

1

@ D) = v wpw=v1v=0lo=1,

so v~ tu1 is the inverse of uv. Thus the closure law holds for R*.

The associative law for R* is inherited from R, of which it is a subset.

The equation 1-1 =1 shows that 1 is the inverse of 1, so that 1 € R*. This
element 1 is still an identity in R* C R, so R* satisfies the identity law.

If u € R*, the equation ulu=uu! =1, which holds because ! is the inverse
of 1, also shows that u is the inverse of u~!. Thus u~! € R¥, inside which it is
still the inverse of u, showing that R* satisfies the inverse law.

Question 7 is bookwork.

End of Paper.
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