University of London

B. Sc. Examination by course unit 2014

MTH4104: Introduction to Algebra

Duration: 2 hours

Date and time: TBD

Model solutions

Question 1.

(a) Give the definition of a partition of a set X.
(b) Let $\left\{A_{1}, A_{2}, \ldots\right\}$ be a partition of a set X, and R the relation
$\left\{(x, y) \in X^{2}\right.$: there exists j such that $x \in A_{j}$ and $\left.y \in A_{j}\right\}$.
Prove that R is an equivalence relation.
Solution (a) A partition of X is a collection $\left\{A_{1}, A_{2}, \ldots\right\}$ of subsets of X having the following properties:

- $A_{i} \neq \emptyset$ for all $i ;$
- $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$;
- $A_{1} \cup A_{2} \cup \cdots=X$.
(b) We must prove that this relation is reflexive, symmetric, and transitive.
- x and x lie in the same part of the partition, so R is reflexive.
- If x and y lie in the same part of the partition, then so do y and x; so R is symmetric.
- Suppose that x and y lie in the same part A_{i} of the partition, and y and z lie in the same part A_{j}. Then $y \in A_{i}$ and $y \in A_{j}$, so $y \in A_{i} \cap A_{j}$; so we must have $A_{i}=A_{j}$ (since different parts are disjoint). Thus x and z both lie in A_{i}. So R is transitive.

Thus R is an equivalence relation.
Question 1 is bookwork.

Question 2.

(a) Prove that $[65]_{186}$ has a multiplicative inverse in the ring \mathbb{Z}_{186}.
(b) Compute this multiplicative inverse.
(c) How many of the elements of \mathbb{Z}_{186} have multiplicative inverses? Justify your answer.

Solution (a) By a theorem from lectures, $[65]_{186}$ has a multiplicative inverse if and only if $\operatorname{gcd}(65,186)=1$. One can prove this by factoring, but since we will need the extended Euclidean algorithm for part (b), we embark on that here. Taking remainders, we calculate

$$
\begin{aligned}
186 & =2 \cdot 65+56 \\
65 & =1 \cdot 56+9 \\
56 & =6 \cdot 9+2 \\
9 & =4 \cdot 2+1 \\
2 & =2 \cdot 1+0,
\end{aligned}
$$

so the greatest common divisor is 1 and the inverse exists.
(b) Reversing the algorithm,

$$
\begin{aligned}
1 & =9-4 \cdot 2 \\
& =9-4(56-6 \cdot 9)=-4 \cdot 56+25 \cdot 9 \\
& =-4 \cdot 56+25(65-56)=25 \cdot 65-29 \cdot 56 \\
& =25 \cdot 65-29(186-2 \cdot 65)=-29 \cdot 186+83 \cdot 65
\end{aligned}
$$

and $[65]_{186}^{-1}=[83]_{186}$.
(c) This number is Euler's totient function evaluated at $186=2 \cdot 3 \cdot 31$, namely $\phi(186)=(2-1)(3-1)(31-1)=60$.
Question 2 is a standard computation, exampled in coursework and in lectures with different constants.

Question 3. Let f be the permutation (1103974)(2)(5118)(6) in S_{11}, which is written in cycle notation.
(a) Write f in two-line notation.
(b) Let g be the element

$$
\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
2 & 8 & 5 & 1 & 6 & 4 & 11 & 9 & 7 & 10 & 3
\end{array}\right)
$$

of S_{11}, written in two-line notation. Determine $(g f)^{-1}$, and write your answer in cycle notation.
(c) Write down an element of S_{11} of order 21.

Solution (a)

$$
f=\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
10 & 2 & 9 & 1 & 11 & 6 & 4 & 5 & 7 & 3 & 8
\end{array}\right)
$$

(b) We first compute $g f$. The result can be written down directly in cycle notation: to produce the cycle containing 1 we write down $1, g f(1), g f(g f(1))$, etcetera, until we recover 1 again; then we repeat this process for each element not yet encountered. This yields $g f=(110537)(2864)(9$ 11). The inverse is computed by reversing all cycles, so $(g f)^{-1}=(173510)(2468)(911)$.
(c) The order of an element is the lcm of the lengths of its cycles. Since $21=7 \cdot 3$, an element that will suffice is (1234567)(8910)(11).
Parts (a, b) of Question 3 are standard computations. Part (c) is unseen, though computing the order of a permutation is equally standard.

Question 4.

(a) State the definition of the complex number $\mathrm{e}^{\mathrm{i} \theta}$, where θ is a real number.
(b) Prove that $\mathrm{e}^{\mathrm{i} \theta} \cdot \mathrm{e}^{\mathrm{i} \phi}=\mathrm{e}^{\mathrm{i}(\theta+\phi)}$ for all real numbers θ and ϕ.
(c) Prove by mathematical induction, or otherwise, that for all integers $n \geqslant 1$,

$$
\begin{equation*}
\cos (1)+\cos (2)+\cdots+\cos (n-1)=\frac{\cos (n)-\cos (n-1)}{2 \cos (1)-2}-\frac{1}{2} \tag{9}
\end{equation*}
$$

Solution (a) $e^{i \theta}=\cos \theta+i \sin \theta$.
(b) The left hand side is
$(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)=\cos \theta \cos \phi-\sin \theta \sin \phi+i(\cos \theta \sin \phi+\sin \theta \cos \phi)$.
Using trigonometric sum formulae, this is

$$
\cos (\theta+\phi)+i \sin (\theta+\phi)
$$

which is the right hand side.
(c) We give the proof by induction. Recognition as the real part of a geometric series is also possible.
The base case is $n=1$, at which the left hand side is an empty sum, evaluating to 0 , which is also the evaluation $\frac{1}{2}-\frac{1}{2}$ of the right hand side.
For the inductive hypothesis, let $P(n)$ be the identity to be proved for all n. Assume $P(k)$ is true; we wish to show $P(k+1)$. It is enough to prove the equation resulting from subtracting $P(k)$ from $P(k+1)$, which is

$$
\cos (k)=\frac{\cos (k+1)-\cos (k)-(\cos (k)-\cos (k-1))}{2 \cos (1)-2} .
$$

It is equivalent to show that

$$
2 \cos (k) \cos (1)=\cos (k+1)+\cos (k-1)
$$

as this implies the equation above upon subtracting $2 \cos (k)$ from each side and then dividing both sides by the real number $2 \cos (1)-2$, which is nonzero. This last equation is seen to be true on expanding the right hand side using angle sum formulae:

$$
\begin{aligned}
\cos (k+1)+\cos (k-1) & =\cos (k) \cos (1)-\sin (k) \sin (1)+\cos (k) \cos (-1)-\sin (k) \sin (-1) \\
& =2 \cos (k) \cos (1)
\end{aligned}
$$

because \cos is an even function and sin an odd one. This completes the inductive step and thus the proof.
Parts (a, b) of Question 4 are bookwork. Part (c) is unseen.

Question 5.

(a) Let R be a ring. Prove that $-(a b)=(-a) \cdot b$ for any elements $a, b \in R$.
(b) Let R be a ring, and define the relation \mid on R so that, if a and b are elements of R, then $a \mid b$ if and only if $b=r a$ for some $r \in R$. Must the relation | be reflexive? symmetric? transitive? Prove your assertions.

Solution (a) We know by a lemma proved in lectures that $0 b=0$ for any $b \in R$. I will make use of this here.
The defining property of the element $-a$, given by the additive inverse law, is

$$
a+(-a)=0
$$

Multiplying by b yields

$$
0=0 b=(a+(-a)) b=a b+(-a) b
$$

using distributivity and our lemma about multiplication by 0 . The result now follows by adding the additive inverse of $a b$ to both sides:

$$
-(a b)=-(a b)+0=-(a b)+a b+(-a) b=(-a) b .
$$

(b) The relation | need not be reflexive, notionally because rings without identity exist. For instance, $2 \nmid 2$ in the ring $2 \mathbb{Z}$.
The relation | is scarcely ever symmetric. For instance, in any ring with identity, $1 \mid 0$ but $0 \nmid 1$.
The relation \mid must be transitive. Suppose $a \mid b$ and $b \mid c$, that is, $b=r a$ and $c=s b$ for some $r, s \in R$. Then $c=s(r a)=(s r) a$ by associativity, implying $a \mid c$.
Question 5(a) is coursework. Question 5(b) is unseen, though the same question over the ring \mathbb{Z} is bookwork.

© Queen Mary, University of London (2014)

Question 6. Let S be the subset of $\mathrm{M}_{2}(\mathbb{C})$ consisting of matrices of the form

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) .
$$

(a) Prove that S is closed under addition and multiplication.
(b) Prove that S satisfies the multiplicative inverse law. You may assume that $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the multiplicative identity in S.
(c) Prove that S is not a field.

Solution (a) The sum of two arbitrary elements $\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right)$ and $\left(\begin{array}{cc}\gamma & \delta \\ -\bar{\delta} & \bar{\gamma}\end{array}\right)$ of S is

$$
\left(\begin{array}{cc}
\alpha+\gamma & \beta+\delta \\
-\beta+\delta & \overline{\alpha+\gamma}
\end{array}\right)
$$

which is visibly in S. Their product is

$$
\left(\begin{array}{cc}
\alpha \gamma-\beta \bar{\delta} & \alpha \delta+\beta \bar{\gamma} \\
-\bar{\beta} \gamma-\bar{\alpha} \bar{\delta} & -\bar{\beta} \delta+\bar{\alpha} \bar{\gamma}
\end{array}\right)=\left(\begin{array}{cc}
\alpha \gamma-\beta \bar{\delta} \\
-\overline{\alpha \delta+\beta \bar{\gamma}} & \frac{\alpha \delta+\beta \bar{\gamma}}{\alpha \gamma-\beta \bar{\delta}}
\end{array}\right)
$$

which is also in S.
(b) Suppose α and β are not both 0 , and write $q=\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right)$. Then

$$
r:=\frac{1}{|\alpha|^{2}+|\beta|^{2}}\left(\begin{array}{cc}
\bar{\alpha} & -\beta \\
\bar{\beta} & \alpha
\end{array}\right)
$$

is in S, and one computes

$$
q r=r q=\frac{1}{|\alpha|^{2}+|\beta|^{2}}\left(\begin{array}{cc}
\alpha \bar{\alpha}+\beta \bar{\beta} & 0 \\
0 & \alpha \bar{\alpha}+\beta \bar{\beta}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

(Of course, r is also the inverse of q within $M_{2}(\mathbb{C})$.)
(c) S is not a field because its multiplication is not commutative. For instance, the matrices $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ both lie in S and fail to commute:

$$
\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

which is unequal to

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) .
$$

Question 6 is unseen in this form, though there is a coursework question etablishing that S is isomorphic as a ring to the quaternions.

Question 7.

(a) Define what it means for a set G with an operation o to be a group.
(b) Give an example of two finite groups which have the same order but are not isomorphic.
(c) Let R be a ring with identity. Prove that the set R^{\times}of units of R, with the operation of multiplication, is a group.

Solution (a) G is a group under \circ iff it satisfies the following axioms:
(G0) Closure law: for all $a, b \in G$, we have $a \circ b \in G$.
(G1) Associative law: for all $a, b, c \in G$, we have $a \circ(b \circ c)=(a \circ b) \circ c$.
(G2) Identity law: there is an element $e \in G$ (called the identity) such that $a \circ e=e \circ a=a$ for any $a \in G$.
(G3) Inverse law: for all $a \in G$, there exists $b \in G$ such that $a \circ b=b \circ a=e$, where e is the identity. The element b is called the inverse of a, written a^{\prime}.
(b) S_{3} has order $3!=6$, as does the additive group \mathbb{Z}_{6}, but the latter is abelian and the former is not, so they cannot be isomorphic.
(c)We must prove the laws from part (a).

Suppose that u^{-1} and v^{-1} are the inverses of u and v. Then

$$
\begin{aligned}
& (u v)\left(v^{-1} u^{-1}\right)=u\left(v v^{-1}\right) u^{-1}=u 1 u^{-1}=u u^{-1}=1, \\
& \left(v^{-1} u^{-1}\right)(u v)=v^{-1}\left(u^{-1} u\right) v=v^{-1} 1 v=v^{-1} v=1,
\end{aligned}
$$

so $v^{-1} u^{-1}$ is the inverse of $u v$. Thus the closure law holds for R^{\times}. The associative law for R^{\times}is inherited from R, of which it is a subset.
The equation $1 \cdot 1=1$ shows that 1 is the inverse of 1 , so that $1 \in R^{\times}$. This element 1 is still an identity in $R^{\times} \subseteq R$, so R^{\times}satisfies the identity law.
If $u \in R^{\times}$, the equation $u^{-1} u=u u^{-1}=1$, which holds because u^{-1} is the inverse of u, also shows that u is the inverse of u^{-1}. Thus $u^{-1} \in R^{\times}$, inside which it is still the inverse of u, showing that R^{\times}satisfies the inverse law.
Question 7 is bookwork.

End of Paper.

© Queen Mary, University of London (2014)

