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Model solutions

Question 1 (a) Give definitions of the terms (i) relation; [2]
(ii) equivalence relation. [3]

(b) Give an example of an equivalence relation on the set {1,2,3} with
exactly two equivalence classes. [3]

Solution (a) A relation on a set X is a subset of X2. X is an equivalence relation
if it satisfies the following three properties:

(Reflexivity) For all x ∈ X, (x,x) ∈ R.

(Symmetry) For all x, y ∈ X, if (x, y) ∈ R then (y,x) ∈ R.

(Transitivity) For all x, y,z ∈ X, if (x, y) ∈ R and (y,z) ∈ R then (x,z) ∈ R.

(b) One such relation, with the equivalence classes {1,2} and {3}, is

R = {(1,1), (1,2), (2,1), (2,2), (3,3)}.

Question 1(a) is bookwork. Question 1(b) is a case of the expected solution
to a coursework question on counting equivalence relations.

Question 2 (a) Use the Euclidean algorithm to compute gcd(426,330). [6]

(b) Find a solution to the equation

426k + 330` = gcd(426,330)

where k and ` are integers. [8]
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Solution (a) Taking remainders, we calculate

426 = 1 ·330 + 96
330 = 3 ·96 + 42
96 = 2 ·42 + 12
42 = 3 ·12 + 6
12 = 2 ·6 + 0,

so the greatest common divisor is 6.
(b) Reversing the algorithm,

6 = 42−3 ·12
= 42−3(96−2 ·42) = −3 ·96 + 7 ·42
= −3 ·96 + 7(330−3 ·96) = 7 ·330−24 ·96
= 7 ·330−24(426−330) = −24 ·426 + 31 ·330

and k = −24, ` = 31 is a solution.
Both parts of question 2 are standard algorithm-following, with many

parallel examples in lecture and coursework.

Question 3 Solve the following system of equations over Z11 for x and y.

[4]11 x + [7]11 y = [4]11

[2]11 x + [6]11 y = [1]11.

Justify your answer. [8]

Solution Here is one of many approaches to solving the system. Solve the
second equation for x:

[2]11 x = [1]11− [6]11 y

=⇒ x = [2]−1
11 ([1]11− [6]11 y).

Substitute into the first equation:

[4]11 [2]−1
11 ([1]11− [6]11 y) + [7]11 y = [3]11.

Since 4/2 = 2 is an integer we may simplify [4]11 [2]−1
11 to [2]11. Then the above

comes out to

[2]11 ([1]11− [6]11 y) + [7]11 y = [4]11

[2]11− [12]11 y + [7]11 y = [4]11

−[5]11 y = [2]11

y = −[5]−1
11 [2]11 = [6]−1

11 [2]11.
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Recogning that 2 · 6 = 12 ≡11 1, this implies y = [2]11[2]11 = [4]11. Substitute
this into the equation for x:

x = [2]−1
11 ([1]11− [6]11 [4]11) = [2]−1

11 [−23]11 = [2]−1
11 [10]11 = [5]11.

As justification we check that these indeed solve the original equations:

[4]11 [5]11 + [7]11 [4]11 = [48]11 = [4]11

[2]11 [5]11 + [6]11 [4]11 = [34]11 = [1]11.

Question 3 is coursework with different constants.

Question 4 Let f be the following permutation in S10, given in two-line
notation. (

1 2 3 4 5 6 7 8 9 10
4 7 9 6 8 1 5 10 3 2

)
(a) Write f in cycle notation. [3]

(b) Let g ∈ S10 be the element (1)(2 8 6 7)(3 5 4 9)(10), in cycle notation.
Determine f g−1, written in cycle notation. [6]

(c) Determine the order of f . [3]

(d) Specify an integer n such that f n fixes exactly seven elements of the set
{1,2, . . . ,10}. [4]

Solution (a) f = (1 4 6)(2 7 5 8 10)(3 9).
(b) f g−1 = (1 4 8 7)(2 5 9 6 10)(3).
(c) The order of f is the least common multiple of the lengths of its cycles,
which is lcm(3,5,2) = 30.
(d) Recall the fact that we used when proving the fact we just used about
order: f n is the product of the n-th power of each of the disjoint cycles in f .

If c is a cycle, then cn is the identity if n divides the order of c; otherwise,
cn does not fix any of the elements contained in c. So the fixed points of any
power of f must be the union of some of its orbits (i.e. the elements contained
in each of its cycles). Our f has cycles of orders 3, 5, and 2, and the only
way to make 7 as the sum of some of these numbers is 7 = 5 + 2. So the n we
are looking for must be a multiple of 5 and of 2, but not of 3. The simplest
solution is n = 10; alternatively, any n which is a multiple of 10 but not of 30
would do.

Parts (a)–(c) of question 4 are standard computations. Question 4(d) is
unseen.

Question 5 (a) State the definition of the divisibility relation | on the set of
natural numbers. [3]

(b) Prove, using mathematical induction, that

12 | (7n
−3n+1 + 2)

for all natural numbers n ≥ 0. [9]
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Solution (a) If a and b are natural numbers, a | b if and only if b = ca for
some natural number c.
(b) Let P(n) be the statement 12 | (7n

−3n+1 + 2). We must prove that P(0) is
true and that P(k) implies P(k + 1) for k ≥ 0.

P(0) says
12 | 70

−31 + 2 = 0,

which is true.
Suppose that P(k) is true for some k. We would like to prove P(k + 1),

which says

12 | 7k+1
−3k+2 + 2 = 7(7k

−3k+1 + 2) + 4 ·3k+1
−12. (1)

By the inductive hypothesis P(k), 12 divides 7(7k
− 3k+1 + 2). Because k ≥ 0,

k + 1 is at least 1 and so 12 = 4 ·3 divides 4 ·3 ·3k = 4 ·3k+1. And of course 12
divides −12. Therefore 12 divides the sum of all three of these terms, which
is the right hand side of equation (1). Therefore P(k + 1) is true, completing
the proof by induction.

Question 5(a) is bookwork. Question 5(b) is unseen though it’s an elab-
oration of similar coursework questions with n appearing only once in the
dividend.

Question 6 (a) Let R be a set on which two operations + and · are defined.
Define what it means for R to be a ring. [4]

(b) Let R be a ring. Prove that, if 0 is the additive identity in R, then 0 ·a = 0
for every element a of R. [4]

(c) Give an example of a ring whose set of elements is finite and in which
the commutative law for multiplication does not hold. Justify your
answer. [6]

Solution (a) R is a ring if the operations satisfy the following laws.
Additive laws:

(Closure) For all a,b ∈ R, we have a + b ∈ R.

(Associativity) For all a,b,c ∈ R, we have a + (b + c) = (a + b) + c.

(Identity) There is an element 0 ∈ R with the property that a + 0 = 0 + a = a
for all a ∈ R.

(Inverse) For all a ∈ R, there exists an element b ∈ R such that a+b = b+a = 0.
We write b as −a.

(Commutativity) For all a,b ∈ R, we have a + b = b + a.

Multiplicative laws:
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(Closure) For all a,b ∈ R, we have ab ∈ R.

(Associativity) For all a,b,c ∈ R, we have a(bc) = (ab)c.

Mixed laws:

(Distributivity) For all a,b,c ∈R, we have a(b+c) = ab+ac and (b+c)a = ba+ca.

(b) By the zero law (aka the additive identity law) and distributivity,

0a + 0 = 0a = (0 + 0)a = 0a + 0a.

Cancelling 0a, by adding its additive inverse to both sides and using the
additive inverse law, gives

0 = −0a + 0a + 0 = −0a + 0a + 0a = 0a.

(c) One class of examples of such rings is the ring of matrices of a fixed size at
least 2 overZm for m ≥ 2. One particular example is the ring of 2×2 matrices
over Z2.

This ring has finitely many elements because a 2×2 matrix is determined
by its four entries, and there are only finitely many choices in Z2 for each of
these entries. (Indeed, it has 24 = 16 elements.)

A counterexample to the commutative law for multiplication is[
1 0
0 0

][
0 1
0 0

]
=

[
0 1
0 0

]
which does not equal [

0 1
0 0

][
1 0
0 0

]
=

[
0 0
0 0

]
.

(For ease of readability I have written a instead of [a]2 for the matrix entries.)
Questions 6(a,b) are bookwork. Question 6(c) is unseen.

Question 7 (a) Let G be a group. Define what it means to say that a set H
is a subgroup of G. [3]

(b) Let g and h be elements of a group G. Prove that if gh = hg, then
g−1h = hg−1. [6]

(c) Let G be a group, and h an element of G. Prove that

{g ∈ G : gh = hg}

is a subgroup of G. [6]
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Solution (a) H is a subgroup of G if H is a subset of G, and H is a group
under the same operation for which G is a group.
(b) Let gh and hg be such elements. Multiply the equation gh = hg by g−1 on
both sides:

hg−1 = g−1ghg−1 = g−1hgg−1 = g−1h,

which is what was to be proved.
(c) Let us give this subset the name H. We use the subgroup test: what we
must show is that if f and g are elements of H, then so is f g−1. We have

f g−1h

= f hg−1 because g ∈H, using part (b)

= h f g−1 because f ∈H

which proves that f g−1
∈H, completing the proof.

Question 7(a) is bookwork. I intend that questions 7(b,c) will be course-
work.

Question 8 Let the operations of addition and multiplication on the set

K = {at + bu : a,b ∈R},

where t and u are formal symbols, be defined as follows:

(at + bu) + (ct + du) = (a + c)t + (b + d)u,
(at + bu) · (ct + du) = (ac + ad + bc− bd)t + (−ac + ad + bc + bd)u.

(a) Compute (1
2 t− 1

2u)2 and express the result in the form at + bu. [3]

(b) Find a multiplicative identity in K, and prove that the multiplication
in K satisfies the identity law. [4]

(c) Specify a bijection f :C→ K such that f (α+β) = f (α)+ f (β) and f (αβ) =
f (α) f (β) for all complex numbers α and β. [6]

[Such a bijection is called an isomorphism of rings.]

Solution (a) Using the definition of multiplication in K,

(
1
2

t−
1
2

u)(
1
2

t−
1
2

u) =

= (
1
2

1
2

+
1
2
−1
2

+
−1
2

1
2
−
−1
2
−1
2

)t + (−
1
2

1
2

+
1
2
−1
2

+
−1
2

1
2

+
−1
2
−1
2

)u =

= −
1
2

t−
1
2

u.

c© Queen Mary, University of London (2014)



MTH4104 (2014) Page 7

(b) If at + bu is a multiplicative identity in K, then (at + bu)(ct + du) = ct + du
for all real numbers c and d. Equating coefficients of t and u, this means

ac + ad + bc− bd = c = 1c + 0d
−ac + ad + bc + bd = d = 0c + 1d.

These equations in Rmust be true for any real numbers c and d, so we may
equate coefficients of c and d in each equation. This gives

a + b = 1
a−b = 0
−a + b = 0

a + b = 1.

This is quickly solved to give a = b = 1
2 . So 1

2 t+ 1
2u should be the multiplicative

identity. Indeed, it is: for all reals c and d,

(
1
2

t +
1
2

u) · (ct + du) = (
1
2

c +
1
2

d +
1
2

c−
1
2

d)t + (−
1
2

c +
1
2

d +
1
2

c +
1
2

d)u = ct + du

and (ct + du) · (
1
2

t +
1
2

u) = (c
1
2

+ c
1
2

+ d
1
2
−d

1
2

)t + (−c
1
2

+ c
1
2

+ d
1
2

+ d
1
2

)u = ct + du

proving the multiplicative identity law.
(c) We would like f (1) to be 1

2 t + 1
2u, the multiplicative identity we found in

part (b). The answer we found in part (a) was the negative of the multiplica-
tive identity, so 1

2 t− 1
2u is a good candidate for f (i), being the square root of

what should be f (−1). Finally, for addition to be “the same” in K as it is in
C, we are led to make the following definition for f :

f (a + bi) := a(
1
2

t +
1
2

u) + b(
1
2

t−
1
2

u) =
a + b

2
t +

a−b
2

u.

I did not ask for a proof, but here’s one. To prove f is injective and
surjective reduces to showing that, for all reals c and d,

a + b
2

t +
a−b

2
u = ct + du

has only one solution. This is true; equating coefficients and solving produces
the unique solution a = c + d, b = c−d.

To prove f (α+β) = f (α) + f (β), let α = a + bi, β = c + di. Then

f (α+β) = f (a + c + (b + d)i) =
a + c + b + d

2
t +

a + c−b−d
2

u

which equals

f (α) + f (β) =

(
a + b

2
t +

a−b
2

u
)
+

(
c + d

2
t +

c−d
2

u
)

=
a + b + c + d

2
t +

a−b + c−d
2

u.
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Similarly, for multiplication,

f (αβ) = f (ac−bd + (ad + bc)i) =
ac− bd + ad + bc

2
t +

ac−bd− ad−bc
2

u

equals

f (α) f (β) =

(
a + b

2
t +

a−b
2

u
)(

c + d
2

t +
c−d

2
u
)

=
(a + b)(c + d) + (a + b)(c−d) + (a− b)(c + d)− (a−b)(c−d)

4
t

+
−(a + b)(c + d) + (a + b)(c−d) + (a−b)(c + d) + (a−b)(c−d)

4
u

=
(1 + 1 + 1−1)ac + (1−1 + 1 + 1)ad + (1 + 1−1 + 1)bc + (1−1−1−1)bd

4
t

+
(−1 + 1 + 1 + 1)ac + (−1−1 + 1−1)ad + (−1 + 1−1−1)bc + (−1−1−1 + 1)bd

4
u

=
ac + ad + bc−bd

2
t +

ac− ad− bc−bd
2

u.

All parts of question 8 are unseen, though they have analogues which
have been seen, including bookwork and coursework questions about prov-
ing field laws in new number systems, and a coursework question about
{a + bu : a,b ∈R},u2 = 2u + 2 being isomorphic to C.

End of Paper
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