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Model solutions

Question1 (a) Give definitions of the terms (i) relation; [2]
(ii) equivalence relation. [3]

(b) Give an example of an equivalence relation on the set {1,2,3} with
exactly two equivalence classes. [3]

Solution (a) A relation on a set X is a subset of X?. X is an equivalence relation
if it satisfies the following three properties:

(Reflexivity) Forall x € X, (x,x) € R.

(Symmetry) Forall x,y € X, if (x,y) € R then (y,x) € R.

(Transitivity) Forall x,y,z € X, if (x,y) € Rand (y,z) € R then (x,z) € R.

(b) One such relation, with the equivalence classes {1,2} and {3}, is
R={(11),(1,2),(2,1),(2,2),3,3)}.

Question 1(a) isbookwork. Question 1(b) is a case of the expected solution
to a coursework question on counting equivalence relations.

Question 2 (a) Use the Euclidean algorithm to compute gcd(426,330). [6]
(b) Find a solution to the equation

426k + 330¢ = gcd(426,330)

where k and ¢ are integers. [8]
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Solution (a) Taking remainders, we calculate

426 =1-330+96
330=3-96+42
96=2-42+12
42=3-12+6
12=2-6+0,
so the greatest common divisor is 6.
(b) Reversing the algorithm,
6=42-3-12
=42-3(96-2-42)=-3-96+7-42
=-3-96+7(330-3-96) =7-330-24-96
=7-330—-24(426 - 330) = —24-426+ 31-330
and k = —24, ¢ = 31 is a solution.

Both parts of question 2 are standard algorithm-following, with many
parallel examples in lecture and coursework.

Question 3 Solve the following system of equations over Z;; for x and y.

[4lx+ 7]y =4l
[2]11x+[6]11y = [1]11.

Justity your answer. [8]

Solution Here is one of many approaches to solving the system. Solve the
second equation for x:

[2l11x=[1]11 - [6]l11y
= x =21 (11 - [6]11 ).

Substitute into the first equation:

[4111 [2]77 ((111 — [6]11 ) + [7]11 v = [3]11.

Since 4/2 =2 is an integer we may simplify [4]1 [2]1_11 to [2]11. Then the above
comes out to

[2]11 ([1]11 = [6l11 ) + [7]11y = [4]11
2l -2l y+[7l1y =[4In
=[5l1y =12l

y = —[5];, 2l = [6] [2]11.
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Recogning that 2-6 = 12 =11 1, this implies y = [2]11[2]11 = [4]11. Substitute
this into the equation for x:
x =213 (11 — [6h11 [4111) = [2151 [-23]11 = [2]; [10]11 = [5]11.
As justification we check that these indeed solve the original equations:
[4]11[5]11 + [7]11 [4]11 = [48]11 = [4]11
[2]11[5]11 + [6]11 [4]11 = [34]11 = [1]11-
Question 3 is coursework with different constants.

Question 4 Let f be the following permutation in Sjp, given in two-line
notation.

1234567 8 9 10
479681510 3 2
(a) Write f in cycle notation. [3]
(b) Let g € Syp be the element (1)(2 8 6 7)(3 5 4 9)(10), in cycle notation.
Determine f¢~!, written in cycle notation. [6]
(c) Determine the order of f. [3]

(d) Specify an integer n such that f" fixes exactly seven elements of the set
{1,2,...,10}. [4]

Solution (a) f=(146)(275810)39).
(b) f¢' =(1487)(259610)(3).
(c) The order of f is the least common multiple of the lengths of its cycles,
which is lem(3,5,2) = 30.
(d) Recall the fact that we used when proving the fact we just used about
order: f" is the product of the n-th power of each of the disjoint cycles in f.
If cis a cycle, then ¢ is the identity if n divides the order of c; otherwise,
c"" does not fix any of the elements contained in c. So the fixed points of any
power of f must be the union of some of its orbits (i.e. the elements contained
in each of its cycles). Our f has cycles of orders 3, 5, and 2, and the only
way to make 7 as the sum of some of these numbers is 7 =5+2. So the n we
are looking for must be a multiple of 5 and of 2, but not of 3. The simplest
solution is n = 10; alternatively, any n which is a multiple of 10 but not of 30
would do.
Parts (a)—(c) of question 4 are standard computations. Question 4(d) is
unseen.

Question 5 (a) State the definition of the divisibility relation | on the set of
natural numbers. [3]

(b) Prove, using mathematical induction, that
12 | (7"=3"1 4+2)

for all natural numbers n > 0. [9]
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Solution (a) If @ and b are natural numbers, a | b if and only if b = ca for
some natural number c.
(b) Let P(n) be the statement 12 | (7" —3"*! +2). We must prove that P(0) is
true and that P(k) implies P(k+1) for k > 0.
P(0) says
12 | 7°-3'+2=0,
which is true.

Suppose that P(k) is true for some k. We would like to prove P(k +1),
which says

12 | 71 =32 42 = 7(7F - 351 1 2) 4 4.3+ 12, (1)

By the inductive hypothesis P(k), 12 divides 7(7% —3*1 +2). Because k >0,
k+1is at least 1 and so 12 = 4-3 divides 4-3-3% = 4-3*1. And of course 12
divides —12. Therefore 12 divides the sum of all three of these terms, which
is the right hand side of equation (1). Therefore P(k + 1) is true, completing
the proof by induction.

Question 5(a) is bookwork. Question 5(b) is unseen though it’s an elab-

oration of similar coursework questions with n appearing only once in the
dividend.

Question 6 (a) Let R be a set on which two operations + and - are defined.
Define what it means for R to be a ring. [4]

(b) Let R be aring. Prove that, if 0 is the additive identity in R, then 0-a =0
for every element a of R. [4]

(c) Give an example of a ring whose set of elements is finite and in which
the commutative law for multiplication does not hold. Justify your
answer. [6]

Solution (a) R is a ring if the operations satisfy the following laws.
Additive laws:

(Closure) Foralla,be R, we havea+b eR.
(Associativity) For alla,b,c € R, we havea+ (b+c) = (a+b)+c.

(Identity) There is an element 0 € R with the property thata+0=0+a=a
foralla e R.

(Inverse) For all a € R, there exists an element b € R such thata+b=b+a =0.
We write b as —a.

(Commutativity) Foralla,b € R, we havea+b=>b+a.

Multiplicative laws:
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(Closure) Foralla,b € R, we have ab € R.

(Associativity) For all a,b,c € R, we have a(bc) = (ab)c.

Mixed laws:

(Distributivity) Foralla,b,c € R, wehavea(b+c) =ab+acand (b+c)a=ba+ca.

(b) By the zero law (aka the additive identity law) and distributivity,
0a+0=0a=(0+0)a=0a+0a.

Cancelling 0a, by adding its additive inverse to both sides and using the
additive inverse law, gives

0=-0a+0a+0=-0a+0a+0a=0a.

(c) One class of examples of such rings is the ring of matrices of a fixed size at
least 2 over Z,, for m > 2. One particular example is the ring of 2 X 2 matrices
over Z.

This ring has finitely many elements because a 2 X 2 matrix is determined
by its four entries, and there are only finitely many choices in Z; for each of
these entries. (Indeed, it has 2* = 16 elements.)

A counterexample to the commutative law for multiplication is

T
g

(For ease of readability [ have written a instead of [a], for the matrix entries.)
Questions 6(a,b) are bookwork. Question 6(c) is unseen.

which does not equal

Question7 (a) Let G be a group. Define what it means to say that a set H
is a subgroup of G. [3]

(b) Let ¢ and & be elements of a group G. Prove that if gh = hg, then
¢ h=hg™L. [6]

(c) Let G be a group, and & an element of G. Prove that
{g€eG:gh=hg}

is a subgroup of G. [6]
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Solution (a) H is a subgroup of G if H is a subset of G, and H is a group
under the same operation for which G is a group.

(b) Let ¢ and hg be such elements. Multiply the equation gh = hg by ¢~! on
both sides:

g™l =g ghgT =g thgg T =g 'h,
which is what was to be proved.

(c) Let us give this subset the name H. We use the subgroup test: what we
must show is that if f and g are elements of H, then so is fg~!. We have

f&'h
= fhg™! because g € H, using part (b)
=hfg! because f € H

which proves that f, g_l € H, completing the proof.
Question 7(a) is bookwork. I intend that questions 7(b,c) will be course-
work.

Question 8 Let the operations of addition and multiplication on the set
K={at+bu:a,belR},
where t and u are formal symbols, be defined as follows:

(at+bu)+ (ct+du)=(a+co)t+(b+d)u,
(at +bu) - (ct +du) = (ac +ad + bc — bd)t + (—ac +ad + bc + bd)u.

(a) Compute (3¢ —1u)? and express the result in the form af + bu. [3]

(b) Find a multiplicative identity in K, and prove that the multiplication
in K satisfies the identity law. [4]

(c) Specify a bijection f : C — K such that f(a+p) = f(a)+ f(5) and f(ap) =
f(a)f(p) for all complex numbers a and . [6]

[Such a bijection is called an isomorphism of rings.]

Solution (a) Using the definition of multiplication in K,

1 1.1 1
—t—=u)(=t—=u) =
_(11+1—1+—11 —1—1)t+( 11+1—1+—11+—1—1) _
2222 22 22 220 2 T Ty M
= 1t 1u
202
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(b) If at + bu is a multiplicative identity in K, then (at + bu)(ct + du) = ct +du
for all real numbers ¢ and d. Equating coefficients of ¢ and u, this means

ac+ad+bc—bd=c=1c+0d
—ac+ad+bc+bd =d =0c+1d.

These equations in R must be true for any real numbers ¢ and d, so we may
equate coefficients of c and d in each equation. This gives

a+b=1

a-b=0
—-a+b=0

a+b=1.

This is quickly solved to givea = b= 1. So 1t + 1u should be the multiplicative
identity. Indeed, it is: for all reals c and d,

1, 1 1 1, 1 1 1 1, 1 1
(§t+§u)-(ct+du)—(§c+§d+Ec—zd)t+(—§c+§d+—c+§d)u—ct+du

2
1 1 1 1 1 1 1 1 1 1
(ct+du)-(§t+§u):(c§+c§+d§—d§)t+(—c§ +C§ +d§ +d§)u:ct+du

proving the multiplicative identity law.
(c) We would like f(1) to be %t + %u, the multiplicative identity we found in
part (b). The answer we found in part (a) was the negative of the multiplica-
tive identity, so %t - %u is a good candidate for f(i), being the square root of
what should be f(—1). Finally, for addition to be “the same” in K as it is in
C, we are led to make the following definition for f:
, 1, 1 1,1 a+b,  a-b
f(a + bl) = a(it + EM) + b(zt - Eu) = Tt + TI/L

I did not ask for a proof, but here’s one. To prove f is injective and

surjective reduces to showing that, for all reals c and d,
Mi,‘ + ﬂu =ct+du
2 2

has only one solution. Thisis true; equating coefficients and solving produces
the unique solutiona=c+d, b=c—d.

To prove f(a+p) = f(a)+ f(B), leta =a+bi, p=c+di. Then

a+c+b+dt+a+c—b—d
2 2

fla+p)=fa+c+(b+d)i)=

which equals

a+b a—b) (c+d c—d) a+b+c+d a-b+c-d
ujl= t u.

f(a)+f(ﬁ):( > t+ > ul+ > t+ > > + >
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Similarly, for multiplication,

f(ap) = f(ac—bd + (ad + be)i) = aC—bd;ad+bct+gc_bd;ad_bcu

equals

2 2

a+b a-b )(c+d c—d)
:(a+b)(c+d)+(a+b)(c—d)+(a—b)(c+d)—(a—b)(c—d)t

f(a)f(ﬁ)=( e (S

4
N —(a+b)(c+d)+(a+b)(c—d)+(a—b)(c+d)+(a—b)(c—d)u
4
3 (1+1+1—1)ac+(1—1+1+1)ad+(1+1—1+1)bc+(1—1—1—1)bdt
B 4
+(—1+1+1+1)ac+(—1—1+1—1)ad+(—1+1—1—1)bc+(—1—1—1+1)bdu

4
ac+ad+bc—bd, ac—ad—bc—bd
= t+ u.
2 2

All parts of question 8 are unseen, though they have analogues which
have been seen, including bookwork and coursework questions about prov-
ing field laws in new number systems, and a coursework question about
{a+bu:a,beR},u?=2u+2 being isomorphic to C.

End of Paper
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