University of London

B. Sc. Examination by course unit 2014

MTH4104 Introduction to Algebra

Duration: 2 hours

Date and time: TBD

Model solutions

Question 1 (a) Give definitions of the terms (i) relation;
 (ii) equivalence relation.
 (b) Give an example of an equivalence relation on the set $\{1,2,3\}$ with exactly two equivalence classes.

Solution (a) A relation on a set X is a subset of X^{2}. X is an equivalence relation if it satisfies the following three properties:
(Reflexivity) For all $x \in X,(x, x) \in R$.
(Symmetry) For all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$.
(Transitivity) For all $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.
(b) One such relation, with the equivalence classes $\{1,2\}$ and $\{3\}$, is

$$
R=\{(1,1),(1,2),(2,1),(2,2),(3,3)\} .
$$

Question 1(a) is bookwork. Question 1(b) is a case of the expected solution to a coursework question on counting equivalence relations.

Question 2 (a) Use the Euclidean algorithm to compute $\operatorname{gcd}(426,330)$.
(b) Find a solution to the equation

$$
426 k+330 \ell=\operatorname{gcd}(426,330)
$$

where k and ℓ are integers.

Solution (a) Taking remainders, we calculate

$$
\begin{aligned}
426 & =1 \cdot 330+96 \\
330 & =3 \cdot 96+42 \\
96 & =2 \cdot 42+12 \\
42 & =3 \cdot 12+6 \\
12 & =2 \cdot 6+0
\end{aligned}
$$

so the greatest common divisor is 6 .
(b) Reversing the algorithm,

$$
\begin{aligned}
6 & =42-3 \cdot 12 \\
& =42-3(96-2 \cdot 42)=-3 \cdot 96+7 \cdot 42 \\
& =-3 \cdot 96+7(330-3 \cdot 96)=7 \cdot 330-24 \cdot 96 \\
& =7 \cdot 330-24(426-330)=-24 \cdot 426+31 \cdot 330
\end{aligned}
$$

and $k=-24, \ell=31$ is a solution.
Both parts of question 2 are standard algorithm-following, with many parallel examples in lecture and coursework.

Question 3 Solve the following system of equations over \mathbb{Z}_{11} for x and y.

$$
\begin{aligned}
& {[4]_{11} x+[7]_{11} y=[4]_{11}} \\
& {[2]_{11} x+[6]_{11} y=[1]_{11} .}
\end{aligned}
$$

Justify your answer.

Solution Here is one of many approaches to solving the system. Solve the second equation for x :

$$
\Rightarrow \quad \begin{aligned}
{[2]_{11} x } & =[1]_{11}-[6]_{11} y \\
\Longrightarrow \quad x & =[2]_{11}^{-1}\left([1]_{11}-[6]_{11} y\right) .
\end{aligned}
$$

Substitute into the first equation:

$$
[4]_{11}[2]_{11}^{-1}\left([1]_{11}-[6]_{11} y\right)+[7]_{11} y=[3]_{11} .
$$

Since $4 / 2=2$ is an integer we may simplify $[4]_{11}[2]_{11}^{-1}$ to $[2]_{11}$. Then the above comes out to

$$
\begin{aligned}
{[2]_{11}\left([1]_{11}-[6]_{11} y\right)+[7]_{11} y } & =[4]_{11} \\
{[2]_{11}-[12]_{11} y+[7]_{11} y } & =[4]_{11} \\
-[5]_{11} y & =[2]_{11} \\
y & =-[5]_{11}^{-1}[2]_{11}=[6]_{11}^{-1}[2]_{11} .
\end{aligned}
$$

© Queen Mary, University of London (2014)

Recogning that $2 \cdot 6=12 \equiv_{11} 1$, this implies $y=[2]_{11}[2]_{11}=[4]_{11}$. Substitute this into the equation for x :

$$
x=[2]_{11}^{-1}\left([1]_{11}-[6]_{11}[4]_{11}\right)=[2]_{11}^{-1}[-23]_{11}=[2]_{11}^{-1}[10]_{11}=[5]_{11} .
$$

As justification we check that these indeed solve the original equations:

$$
\begin{aligned}
& {[4]_{11}[5]_{11}+[7]_{11}[4]_{11}=[48]_{11}=[4]_{11}} \\
& {[2]_{11}[5]_{11}+[6]_{11}[4]_{11}=[34]_{11}=[1]_{11} .}
\end{aligned}
$$

Question 3 is coursework with different constants.
Question 4 Let f be the following permutation in S_{10}, given in two-line notation.

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 7 & 9 & 6 & 8 & 1 & 5 & 10 & 3 & 2
\end{array}\right)
$$

(a) Write f in cycle notation.
(b) Let $g \in S_{10}$ be the element (1)(2 867)(3549)(10), in cycle notation. Determine fg^{-1}, written in cycle notation.
(c) Determine the order of f.
(d) Specify an integer n such that f^{n} fixes exactly seven elements of the set $\{1,2, \ldots, 10\}$.

Solution (a) $f=(146)(275810)(39)$.
(b) $\mathrm{fg}^{-1}=(1487)(259610)(3)$.
(c) The order of f is the least common multiple of the lengths of its cycles, which is $\operatorname{lcm}(3,5,2)=30$.
(d) Recall the fact that we used when proving the fact we just used about order: f^{n} is the product of the n-th power of each of the disjoint cycles in f.

If c is a cycle, then c^{n} is the identity if n divides the order of c; otherwise, c^{n} does not fix any of the elements contained in c. So the fixed points of any power of f must be the union of some of its orbits (i.e. the elements contained in each of its cycles). Our f has cycles of orders 3,5 , and 2 , and the only way to make 7 as the sum of some of these numbers is $7=5+2$. So the n we are looking for must be a multiple of 5 and of 2 , but not of 3 . The simplest solution is $n=10$; alternatively, any n which is a multiple of 10 but not of 30 would do.

Parts (a)-(c) of question 4 are standard computations. Question 4(d) is unseen.

Question 5 (a) State the definition of the divisibility relation | on the set of natural numbers.
(b) Prove, using mathematical induction, that

$$
12 \mid\left(7^{n}-3^{n+1}+2\right)
$$

for all natural numbers $n \geq 0$.

Solution (a) If a and b are natural numbers, $a \mid b$ if and only if $b=c a$ for some natural number c.
(b) Let $P(n)$ be the statement $12 \mid\left(7^{n}-3^{n+1}+2\right)$. We must prove that $P(0)$ is true and that $P(k)$ implies $P(k+1)$ for $k \geq 0$.
$P(0)$ says

$$
12 \mid 7^{0}-3^{1}+2=0,
$$

which is true.
Suppose that $P(k)$ is true for some k. We would like to prove $P(k+1)$, which says

$$
\begin{equation*}
12 \mid 7^{k+1}-3^{k+2}+2=7\left(7^{k}-3^{k+1}+2\right)+4 \cdot 3^{k+1}-12 \tag{1}
\end{equation*}
$$

By the inductive hypothesis $P(k), 12$ divides $7\left(7^{k}-3^{k+1}+2\right)$. Because $k \geq 0$, $k+1$ is at least 1 and so $12=4 \cdot 3$ divides $4 \cdot 3 \cdot 3^{k}=4 \cdot 3^{k+1}$. And of course 12 divides -12 . Therefore 12 divides the sum of all three of these terms, which is the right hand side of equation (1). Therefore $P(k+1)$ is true, completing the proof by induction.

Question 5(a) is bookwork. Question 5(b) is unseen though it's an elaboration of similar coursework questions with n appearing only once in the dividend.

Question 6 (a) Let R be a set on which two operations + and \cdot are defined. Define what it means for R to be a ring.
(b) Let R be a ring. Prove that, if 0 is the additive identity in R, then $0 \cdot a=0$ for every element a of R.
(c) Give an example of a ring whose set of elements is finite and in which the commutative law for multiplication does not hold. Justify your answer.

Solution (a) R is a ring if the operations satisfy the following laws.
Additive laws:
(Closure) For all $a, b \in R$, we have $a+b \in R$.
(Associativity) For all $a, b, c \in R$, we have $a+(b+c)=(a+b)+c$.
(Identity) There is an element $0 \in R$ with the property that $a+0=0+a=a$ for all $a \in R$.
(Inverse) For all $a \in R$, there exists an element $b \in R$ such that $a+b=b+a=0$. We write b as $-a$.
(Commutativity) For all $a, b \in R$, we have $a+b=b+a$.
Multiplicative laws:

© Queen Mary, University of London (2014)

(Closure) For all $a, b \in R$, we have $a b \in R$.
(Associativity) For all $a, b, c \in R$, we have $a(b c)=(a b) c$.
Mixed laws:
(Distributivity) For all $a, b, c \in R$, we have $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.
(b) By the zero law (aka the additive identity law) and distributivity,

$$
0 a+0=0 a=(0+0) a=0 a+0 a .
$$

Cancelling $0 a$, by adding its additive inverse to both sides and using the additive inverse law, gives

$$
0=-0 a+0 a+0=-0 a+0 a+0 a=0 a .
$$

(c) One class of examples of such rings is the ring of matrices of a fixed size at least 2 over \mathbb{Z}_{m} for $m \geq 2$. One particular example is the ring of 2×2 matrices over \mathbb{Z}_{2}.

This ring has finitely many elements because a 2×2 matrix is determined by its four entries, and there are only finitely many choices in \mathbb{Z}_{2} for each of these entries. (Indeed, it has $2^{4}=16$ elements.)

A counterexample to the commutative law for multiplication is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

which does not equal

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

(For ease of readability I have written a instead of $[a]_{2}$ for the matrix entries.)
Questions 6(a,b) are bookwork. Question 6(c) is unseen.

Question 7 (a) Let G be a group. Define what it means to say that a set H is a subgroup of G.
(b) Let g and h be elements of a group G. Prove that if $g h=h g$, then $g^{-1} h=h g^{-1}$.
(c) Let G be a group, and h an element of G. Prove that

$$
\{g \in G: g h=h g\}
$$

is a subgroup of G.

Solution (a) H is a subgroup of G if H is a subset of G, and H is a group under the same operation for which G is a group.
(b) Let $g h$ and $h g$ be such elements. Multiply the equation $g h=h g$ by g^{-1} on both sides:

$$
h g^{-1}=g^{-1} g h g^{-1}=g^{-1} h g g^{-1}=g^{-1} h
$$

which is what was to be proved.
(c) Let us give this subset the name H. We use the subgroup test: what we must show is that if f and g are elements of H, then so is $f g^{-1}$. We have

$$
\begin{aligned}
& f g^{-1} h & & \\
= & f h g^{-1} & & \text { because } g \in H, \text { using part (b) } \\
= & h f g^{-1} & & \text { because } f \in H
\end{aligned}
$$

Question 7(a) is bookwork. I intend that questions 7(b,c) will be coursework.

Question 8 Let the operations of addition and multiplication on the set

$$
K=\{a t+b u: a, b \in \mathbb{R}\},
$$

where t and u are formal symbols, be defined as follows:

$$
\begin{aligned}
(a t+b u)+(c t+d u) & =(a+c) t+(b+d) u \\
(a t+b u) \cdot(c t+d u) & =(a c+a d+b c-b d) t+(-a c+a d+b c+b d) u .
\end{aligned}
$$

(a) Compute $\left(\frac{1}{2} t-\frac{1}{2} u\right)^{2}$ and express the result in the form $a t+b u$.
(b) Find a multiplicative identity in K, and prove that the multiplication in K satisfies the identity law.
(c) Specify a bijection $f: \mathbb{C} \rightarrow K$ such that $f(\alpha+\beta)=f(\alpha)+f(\beta)$ and $f(\alpha \beta)=$ $f(\alpha) f(\beta)$ for all complex numbers α and β.
[Such a bijection is called an isomorphism of rings.]

Solution (a) Using the definition of multiplication in K,

$$
\begin{aligned}
& \left(\frac{1}{2} t-\frac{1}{2} u\right)\left(\frac{1}{2} t-\frac{1}{2} u\right)= \\
& \quad=\left(\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{-1}{2}+\frac{-1}{2} \frac{1}{2}-\frac{-1}{2} \frac{-1}{2}\right) t+\left(-\frac{1}{2} \frac{1}{2}+\frac{1}{2} \frac{-1}{2}+\frac{-1}{2} \frac{1}{2}+\frac{-1}{2} \frac{-1}{2}\right) u= \\
& =-\frac{1}{2} t-\frac{1}{2} u
\end{aligned}
$$

© Queen Mary, University of London (2014)

(b) If $a t+b u$ is a multiplicative identity in K, then $(a t+b u)(c t+d u)=c t+d u$ for all real numbers c and d. Equating coefficients of t and u, this means

$$
\begin{aligned}
a c+a d+b c-b d & =c=1 c+0 d \\
-a c+a d+b c+b d & =d=0 c+1 d .
\end{aligned}
$$

These equations in \mathbb{R} must be true for any real numbers c and d, so we may equate coefficients of c and d in each equation. This gives

$$
\begin{aligned}
a+b & =1 \\
a-b & =0 \\
-a+b & =0 \\
a+b & =1 .
\end{aligned}
$$

This is quickly solved to give $a=b=\frac{1}{2}$. So $\frac{1}{2} t+\frac{1}{2} u$ should be the multiplicative identity. Indeed, it is: for all reals c and d,

$$
\left(\frac{1}{2} t+\frac{1}{2} u\right) \cdot(c t+d u)=\left(\frac{1}{2} c+\frac{1}{2} d+\frac{1}{2} c-\frac{1}{2} d\right) t+\left(-\frac{1}{2} c+\frac{1}{2} d+\frac{1}{2} c+\frac{1}{2} d\right) u=c t+d u
$$

and

$$
(c t+d u) \cdot\left(\frac{1}{2} t+\frac{1}{2} u\right)=\left(c \frac{1}{2}+c \frac{1}{2}+d \frac{1}{2}-d \frac{1}{2}\right) t+\left(-c \frac{1}{2}+c \frac{1}{2}+d \frac{1}{2}+d \frac{1}{2}\right) u=c t+d u
$$

proving the multiplicative identity law.
(c) We would like $f(1)$ to be $\frac{1}{2} t+\frac{1}{2} u$, the multiplicative identity we found in part (b). The answer we found in part (a) was the negative of the multiplicative identity, so $\frac{1}{2} t-\frac{1}{2} u$ is a good candidate for $f(i)$, being the square root of what should be $f(-1)$. Finally, for addition to be "the same" in K as it is in \mathbb{C}, we are led to make the following definition for f :

$$
f(a+b i):=a\left(\frac{1}{2} t+\frac{1}{2} u\right)+b\left(\frac{1}{2} t-\frac{1}{2} u\right)=\frac{a+b}{2} t+\frac{a-b}{2} u .
$$

I did not ask for a proof, but here's one. To prove f is injective and surjective reduces to showing that, for all reals c and d,

$$
\frac{a+b}{2} t+\frac{a-b}{2} u=c t+d u
$$

has only one solution. This is true; equating coefficients and solving produces the unique solution $a=c+d, b=c-d$.

To prove $f(\alpha+\beta)=f(\alpha)+f(\beta)$, let $\alpha=a+b i, \beta=c+d i$. Then

$$
f(\alpha+\beta)=f(a+c+(b+d) i)=\frac{a+c+b+d}{2} t+\frac{a+c-b-d}{2} u
$$

which equals
$f(\alpha)+f(\beta)=\left(\frac{a+b}{2} t+\frac{a-b}{2} u\right)+\left(\frac{c+d}{2} t+\frac{c-d}{2} u\right)=\frac{a+b+c+d}{2} t+\frac{a-b+c-d}{2} u$.

Similarly, for multiplication,

$$
f(\alpha \beta)=f(a c-b d+(a d+b c) i)=\frac{a c-b d+a d+b c}{2} t+\frac{a c-b d-a d-b c}{2} u
$$

equals

$$
\begin{aligned}
f(\alpha) f(\beta)= & \left(\frac{a+b}{2} t+\frac{a-b}{2} u\right)\left(\frac{c+d}{2} t+\frac{c-d}{2} u\right) \\
= & \frac{(a+b)(c+d)+(a+b)(c-d)+(a-b)(c+d)-(a-b)(c-d)}{4} t \\
& \quad+\frac{-(a+b)(c+d)+(a+b)(c-d)+(a-b)(c+d)+(a-b)(c-d)}{4} u \\
= & \frac{(1+1+1-1) a c+(1-1+1+1) a d+(1+1-1+1) b c+(1-1-1-1) b d}{4} t \\
& \quad+\frac{(-1+1+1+1) a c+(-1-1+1-1) a d+(-1+1-1-1) b c+(-1-1-1+1) b d}{4} u \\
= & \frac{a c+a d+b c-b d}{2} t+\frac{a c-a d-b c-b d}{2} u .
\end{aligned}
$$

All parts of question 8 are unseen, though they have analogues which have been seen, including bookwork and coursework questions about proving field laws in new number systems, and a coursework question about $\{a+b u: a, b \in \mathbb{R}\}, u^{2}=2 u+2$ being isomorphic to \mathbb{C}.

End of Paper

