MATH 5105 Differential and Integral Analysis Assignment 5

- 1. Let $f_n(x) = \frac{1 + \cos^{2023}(nx)}{\sqrt{n}}$. Does $\{f_n\}$ converge uniformly to a function f on \mathbb{R} ?
- (a) Show for all x ∈ ℝ, the sum ∑_{n=1}[∞] 1/n² cos (x/n) converges uniformly.
 (b) Show for all x ∈ ℝ, the sum ∑_{n=1}[∞] 1/n³ sin (x/n) converges uniformly.
- 3. Does the pointwise limit function of the $\sum_{n=1}^{\infty} \frac{1}{n} \cos\left(\frac{x}{n}\right)$ exist as a function $f : \mathbb{R} \to \mathbb{R}$, i.e. for all $x \in \mathbb{R}$? If the function f exists, decide whether or not the convergence is uniform.
- 4. Find a relationship between $\frac{1}{n^2} \cos\left(\frac{x}{n}\right)$ and $\frac{1}{n^3} \sin\left(\frac{x}{n}\right)$ and use this to show $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} \cos\left(\frac{x}{n}\right)$$

is differentiable.