MATH 5105 Differential and Integral Analysis Assignment 5

1. Let $f_{n}(x)=\frac{1+\cos ^{2023}(n x)}{\sqrt{n}}$. Does $\left\{f_{n}\right\}$ converge uniformly to a function f on \mathbb{R} ?
2. (a) Show for all $x \in \mathbb{R}$, the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$ converges uniformly.
(b) Show for all $x \in \mathbb{R}$, the sum $\sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$ converges uniformly.
3. Does the pointwise limit function of the $\sum_{n=1}^{\infty} \frac{1}{n} \cos \left(\frac{x}{n}\right)$ exist as a function f : $\mathbb{R} \rightarrow \mathbb{R}$, i.e. for all $x \in \mathbb{R}$? If the function f exists, decide whether or not the convergence is uniform.
4. Find a relationship between $\frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)$ and $\frac{1}{n^{3}} \sin \left(\frac{x}{n}\right)$ and use this to show $f: \mathbb{R} \rightarrow$ \mathbb{R} defined by

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{x}{n}\right)
$$

is differentiable.

