
②
a) By direct computation ,

Ray = sang + raasay
From the definition of lhmistoffl symbols , we have
Raab = I g

" Is#it rdbgac - I ) =

= £ of
"
as gac

To compute this , recall that fn any matrixM

TR1M-4NI,MK) ) = #ahndetmlx)
To show this

,
consider the variation im lancet M

due to a variation isx in xh :

S bndetm = h dit 1Mt SM ) - hnditm

= In detox)
htm

= bn dit M' IMTSM)

= h dit ITI t MSM)
= bn ( I tTrM" 8M ) + 018M')

= Tr M
'
SM t 018M

'

)

Taking the coefficient of sin on both sides



gives
the desired result

. applying this result

to the case when that matrix M is the metric

gab , we find
Raab = £ of

" Db fac
= taking =¥g, snag

Plugging this result into the original equation,

Papa f = sap"ft raabpbf =

= 2 ( gab abf ) tfgpblrgl ) g" 2J
= ffg, 21mg gababf )

which is the desired result
.

b) We write the flat metric on IM in spherical
coordinates as

dsh = drattedRin- i)

where drk.is is the metric on the unit



In -N - sphere , its actual form is not relevant

here
,
the important point is that it only depends

on angles .

We compute the determinant of the metric as

cbtg = r
'"" dit trims)

Considering a spherically symmetric function
on IN , f- flr) ,

the Laplacian is :

Af =t.pk/rgIgab2bf)=--fng#*sa/rn-ldetnnIkogarsrf )
= srIr" af )

= sift nf of

Im
going from the 2nd time to the 3rd

we used that got = is
"

so only the radial

derivatives will contribute; since chtrm only
depends on the angles on the 1h -t)- sphere , it



won't be affected by the radial derivatives
.

Now we can find all spherically symmetric
solutions to the Laplace equation on IN :

Afk) = sift n-frtrf-fn.fr/rn-tdrf)-- 0

Integrating this equation once gives ,
~ .

rmrdrf = a ⇒ Orf = ¥,
when I , = constant . Integrating again ,

flr ) = In, t C2

where G and ca an constants and we

have redefined 4 = -
.

Notice that this solution isn't valid for h=2 .

In this case , we
have

Arf = If ⇒ flr) = Ehr + I
= t.hn/r/ca)



⑥ a) 0 = Gab t th gab
= Rab -GR gab

- If gab

Taking the trace of this equation yields
0 = R - 2R - the ⇒ R = - ¥
Substituting this into the Einstein

eg :

0 = Rab - £ R gab - 3g gab =

= Rab - I f- f) gab - If gab
= Rab t It fab

b) Let us define a new tensor :

Eab = Rab + § gab = 0

We solve the Einstein equations following
the same steps as in the lectures to

find the Schwarzschild metric in the vacuum core :



Consider the combination of the binsteim equation :

e
"B-A)
Ettt Err = IY1A 't B

' ) = 0

This implies AIH = - Btr)
.

Recall that the

integration constant can be set to gene by resealing
the time coordinate t

.

Considering the Eoe = 0 equation and
using

the previous result yields
Or ( re
" ) = It 31g

⇒ rent = rt if + C , c = constant

⇒ E2A = It EE tt

Demanding that in the L → a limit we recover

the usual asymptotically flat Schwarzschild
solution fixes C = -26M

.
Hence
,
the metric is :

old = - (HE - 2tf ) dtty.ir#dIqtr4dottniniOdtt )



⑤Qnn : solution

d5= - ft2Ix¥)dEtI¥¥+r4dO4sim0dW
2=-11-2ft Et

*
+
NO't

sina.tl/E=-kaI=f-2MqtaI)IL--Rcxh--rati2=-eIt
+ In =

- E

- E4F t ( 1-often) ( Eat E) =O

IN £11 - of -1¥ )f Eat e) =E , E=EE
'

-

main Hr)

A- If-21 + E)( Etc )
Fn null geodesics ,Vegg=¥a(t2Mt¥)
Veep =0 fg r±=MIMI



Veg =0 fer r=I( 3Mt 9mF
'

)
So Vepf looks as follows
"

It .
→ students should identify :

i ) Hr)↳ 0 & r→x

ii ) Hr) → ex fer r→0
iii) There is a maximum and a minimum .



⑤ The metric is :

di = - (¥ - ¥ ) DE + (E- II )" die + v2 (dandy-+ IE)

from which it follows that the Lagrangian
governing

the geodesics is
I = -1¥ -E) É + (E-¥)"ñ+r4ñ+j+É)

a) Using the definitions in the notes
,

E = - gab Ht)
" Ib = (É - Ep ) I

kx = gab (A)
"

if = rain

Kg = gab /g)
" it = pig

kz = gab (A)
"

I
>
= v22

These quantities can also be calculated
using

that I does not depend on t , ✗ iy and
Z
,
so

3¥ = - 21¥ - If:) 't = - 2E = aunt

and so on
.



b) Substituting the results from a) into 2

we get
• = - ;÷¥+;÷÷+£lki+ki+k⇒= - a

⇒ f. it -111¥ -E) ( { + E.) =£É
⇒ vH=£( E- E) ( { + E.)
when Ñ=k× -1kg

"

-1k¥ and 6=0,1 for
null and timelike geodesics .

Massive particles → timelike geodesics ( E-1)

vH=£I¥-¥µ+hÉ)
Hr) = ¥, -1¥, + 2tÉÉ > 0

⇒ Hr) doesn't have entrance

V4) ~ - riÉ
274

as r→O

UH - gee, as r→x



UH =O @ ¥ - ¥, = 0 ⇒ r+= (ero)"

Thus
,
Hr) looks like

V4) a

:I:*•

4
s r

From the shape of Hr) it follows that
massive particles which initially travel towards me
will reach a mmseimmm r=r* given by

Vlr*) = { E2

and then they'll bounce back and reach r=O

in finite time
. Particles which initially travel



towards smaller r will inevitably reach r=0

in finite time .

c) Radial timelike geodesics (E=0)

are given by
ii. + ( ¥ - E.) = E2

when i = dÉ,
and I is the

proper
time

.

⇒ ¥= - jE"(¥-¥÷
and we pick the "

-

"

sign
because the

particle is travelling inwards . Then
,
the

proper
time taken is

given by :
0

At = -fdr-
* fE4É_r÷⇒

= f- [ anton / É- 2¥42ÑE¥ez-r¥yµ+ro) - "d-m(ÉÉe)]


