(2)
a) By direct computation,

$$
\nabla_{a} \nabla^{a} g=\partial_{a} \nabla^{a} f+\Gamma_{a b}^{a} \nabla^{b} f
$$

From the definition of Chnistoffel symbols, we have

$$
\begin{aligned}
\Gamma_{a b}^{a} & =\frac{1}{2} g^{a c}\left(\partial_{a} g_{b c}+\partial_{b} g_{a c}-\partial_{c} g_{a b}\right)= \\
& =\frac{1}{2} g^{a c} \partial_{b} g_{a c}
\end{aligned}
$$

To compute this, recall that for any matrix M

$$
\operatorname{Tr}\left(M^{-1}(x) \frac{\partial}{\partial x^{a}} M(x)\right)=\frac{\partial}{\partial x^{a}} \ln \operatorname{det} M(x)
$$

To show this, comiden the variation in $\operatorname{lm} \operatorname{det} M$ due to a vacation δx^{a} in x^{a} :

$$
\begin{aligned}
\delta \ln \operatorname{det} M & =\ln \operatorname{det}(M+\delta M)-\ln \operatorname{det} M \\
& =\ln \frac{\operatorname{det}(M+\delta M)}{\operatorname{det} M} \\
& =\ln \operatorname{det} M^{-1}(M+\delta M) \\
& =\ln \operatorname{det}\left(\mathbb{1}+M^{-1} \delta M\right) \\
& =\ln \left(\mathbb{1}+\operatorname{Tr} M^{-1} \delta M\right)+0\left(\delta M^{2}\right) \\
& =\operatorname{Tr} M^{-1} \delta M+O\left(\delta M^{2}\right)
\end{aligned}
$$

Taking the coefficient of δx^{n} on both sides
gives the desired result. Applying this result to the case whee that matrix M is the metric gab, we find

$$
\begin{aligned}
\Gamma_{a b}^{a} & =\frac{1}{2} g^{a c} \partial_{b} g_{a c} \\
& =\frac{1}{2} \partial_{b} \ln g=\frac{1}{\sqrt{|g|}} \partial_{b} \sqrt{|g|}
\end{aligned}
$$

Plugging this result into the onginal equation,

$$
\begin{aligned}
\nabla_{a} \nabla^{a} f & =\partial_{a} \nabla^{a} f+\Gamma_{a b}^{a} \nabla^{b} f= \\
& =\partial_{a}\left(g^{a b} \partial_{b} f\right)+\frac{1}{\sqrt{|g|}} \partial_{b}(\sqrt{|g|}) g^{b c} \partial_{c} f \\
& =\frac{1}{\sqrt{|g|}} \partial_{a}\left(\sqrt{|g|} g^{a b} \partial_{b} f\right)
\end{aligned}
$$

which is the desired result.
b) We waite the flat anetric on \mathbb{R}^{n} in spherical coordinates as

$$
d s^{2}=d r^{2}+r^{2} d \Omega_{(n-1)}^{2}
$$

where $d \Omega_{(n-1)}^{2}$ is the mantric on the unit
$(n-1)$-sphere; its acteral form is not relevant have, the important point is that it only depends on angles.
We compute the cutaminant of the mantric as

$$
\text { lt } g=r^{2(n-1)} \operatorname{det}\left(\Omega_{(n-1)}\right)
$$

Considering a spherically symmetric function on $\mathbb{R}^{n}, f=f(r)$, the Laplacian is:

$$
\begin{aligned}
\Delta f & \left.=\frac{1}{\sqrt{|g|}} \partial_{a}(\sqrt{\mid g}) g^{a b} \partial_{b} f\right)= \\
& =\frac{1}{r^{n-1}\left(\text { at } \Omega_{n-1}\right)^{1 / 2}} \partial_{a}\left(r^{n-1}\left(\text { let } \Omega_{n-1}\right)^{1 / 2} g^{a r} \partial_{r} f\right) \\
& =\frac{1}{r^{n-1}} \partial_{r}\left(r^{n-1} \partial_{r} f\right) \\
& =\partial_{r}^{2} f+\frac{n-1}{r} \partial_{r} f
\end{aligned}
$$

In going from the and line to the Bred we used that $g^{a r}=\delta^{a r}$ so only the racial derivatives will contribute; sine aet Ω_{n-1} only depends on the angles on the $(n-1)$-splore, it
won't be affected by the racial derivatives.
Now we can find all spherically symmetric solutions to the Laplace equation on \mathbb{R}^{n} :

$$
\Delta f(r)=\partial_{r}^{2} f+\frac{n-1}{r} \partial_{r} f=\frac{1}{r^{n-1}} \partial_{r}\left(r^{n-1} \partial_{r} f\right)=0
$$

Integrating this equation once gives,

$$
r^{n-1} \partial_{r} f=\tilde{c}_{1} \Rightarrow \partial r f=\frac{\tilde{c}_{1}}{r_{1}^{n-1}}
$$

where $\tilde{C}_{1}=$ constant. Integrating again,

$$
f(r)=\frac{C_{1}}{r^{n-2}}+C_{2}
$$

where C_{1} and C_{2} ane constants and we have redefined $C_{1}=-\frac{\tilde{C}_{1}}{n-2}$

Notice that this solution isn't valid for $n=2$.
In this case we have

$$
\begin{aligned}
\partial r j=\frac{\tilde{C}_{1}}{r} \Rightarrow f(r) & =\tilde{c}_{1} \ln r+\tilde{c}_{2} \\
& =\tilde{c}_{1} \ln \left(r / c_{2}\right)
\end{aligned}
$$

(6)

$$
\text { a) } \quad \begin{aligned}
0 & =G_{a b}+\Lambda g_{a b} \\
& =R_{a b}-\frac{1}{2} R g_{a b}-\frac{3}{L^{2}} g_{a b}
\end{aligned}
$$

Talking the trace of this equation yields

$$
0=R-2 R-\frac{12}{L^{2}} \Rightarrow R=-\frac{12}{L^{2}}
$$

Substituting this into the Einstein eq:

$$
\begin{aligned}
0 & =R_{a b}-\frac{1}{2} R g_{a b}-\frac{3}{L^{2}} g_{a b}= \\
& =R_{a b}-\frac{1}{2}\left(-\frac{12}{L^{2}}\right) g_{a b}-\frac{3}{L^{2}} g_{a b} \\
& =R_{a b}+\frac{3}{L^{2}} g_{a b}
\end{aligned}
$$

b) Let us define a now tenon:

$$
E_{a b}=R_{a b}+\frac{3}{E} g_{a b}=0
$$

We sobs the Einstein equations following the sane steps as in the lectures to find the Scheargschild metric in the vacuum care:

Consider the combination of the Einstein equation:

$$
e^{2(B-A)} E_{t t}+E_{r r}=\frac{2}{r}\left(A^{\prime}+B^{\prime}\right)=0
$$

This implies $A(r)=-B(r)$. Recall that the integration constant can be set to zee by rescaling the time coordinate t.
Considering the $E_{\theta \theta}=0$ equation and using the previous result yields

$$
\begin{aligned}
& \partial_{r}\left(r e^{2 A}\right)=1+\frac{3 r^{2}}{L^{2}} \\
\Rightarrow & r e^{2 A}=r+\frac{r^{3}}{L^{2}}+C \quad, C=\text { constant } \\
\Rightarrow & e^{2 A}=1+\frac{r^{2}}{L^{2}}+\frac{C}{r}
\end{aligned}
$$

Demanding that in the $L \rightarrow \infty$ limit we rewoven the usual asymptotically flat Schwauzschilel solution fixes $C=-2 G M$. Hence, the metric is:

$$
d s^{2}=-\left(1+\frac{r^{2}}{L^{2}}-\frac{2 G H}{r}\right) d t^{2}+\frac{d r^{2}}{1+\frac{r^{2}}{L^{2}}-\frac{2 G M}{r}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

(5.) Quntion: Solution

$$
\begin{aligned}
& d s^{2}=-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& Z=-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) \dot{t}^{2}+\frac{\dot{r}^{2}}{1-\frac{2 M}{r}+\frac{a^{2}}{r}}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) \\
& E=-K_{a} \dot{x}^{4}=\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) t \\
& L=R_{c} \dot{x}^{2}=r^{2} \dot{\psi} \\
& Z=-\frac{E^{2}}{()}+\frac{\dot{r}^{2}}{L)}+\frac{L^{2}}{r^{2}}=-\varepsilon \\
&-E^{2}+\dot{r}^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)\left(\frac{L^{2}}{r^{2}}+\varepsilon\right)=0 \\
& \frac{1}{2} \dot{r}^{2}+\frac{1}{2}\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)\left(\frac{L^{2}}{r^{2}}+\varepsilon\right)=\varepsilon, \varepsilon=\frac{1}{2} E^{2} \\
& M^{2}>Q^{2} \\
& \frac{V(r)}{} \\
& V(r)=\frac{1}{2}\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)\left(\frac{L^{2}}{r^{2}}+\varepsilon\right)
\end{aligned}
$$

For mull geodesics, $V_{\text {eff }}=\frac{L^{2}}{2 r^{2}}\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)$

$$
V_{\text {eff }}=0 \quad \text { per } \quad r_{t}=M \pm \sqrt{M^{2}-Q^{2}}
$$

$$
V_{p g}^{\prime}=0 \quad \text { for } \quad V=\frac{1}{2}\left(3 M \pm \sqrt{9 M^{2}-8 Q^{2}}\right)
$$

So Vegs looks as follows

\rightarrow Students should identify:
i) $V(r)>0$ for $r \rightarrow \infty$
ii) $V(r) \rightarrow+\infty$ for $r \rightarrow 0$
iii) There is a maximum and a minimum.
(5) The metric is:

$$
d s^{2}=-\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{0}^{2}}{r^{2}}\right) d t^{2}+\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{0}^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

from which it follows that the Lagoangoon governing the geodesics is

$$
\mathcal{L}=-\left(\frac{r^{2}}{e^{2}}-\frac{r_{0}^{2}}{r^{2}}\right) \dot{t}^{2}+\left(\frac{r^{2}}{e^{2}} \frac{r_{0}^{2}}{r^{2}}\right)^{-1} \dot{r}^{2}+r^{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$

a) Using the definitions in the notes,

$$
\begin{aligned}
& E=-g_{a b}\left(\partial_{t}\right)^{a} \dot{x}^{b}=\left(\frac{r^{2}}{e^{2}}-\frac{r_{0}^{2}}{r^{2}}\right) \dot{t} \\
& k_{x}=g_{a b}\left(\partial_{x}\right)^{a} \dot{x}^{b}=r^{2} \dot{x} \\
& k_{y}=g_{a b}\left(\partial_{y}\right)^{a} \dot{x}^{b}=r^{2} \dot{y} \\
& k_{z}=g_{a b}\left(\partial_{z}\right)^{a} \dot{x}^{b}=r^{2} \dot{z}
\end{aligned}
$$

These quantities can oho be calculated using that \mathcal{L} does not depend on t, x, y and z, so

$$
\frac{\partial \mathcal{L}}{\partial \dot{t}}=-2\left(\frac{r^{2}}{l^{2}}-\frac{r_{0}^{2}}{r^{2}}\right) \ddot{t}=-2 E=\text { comdt }
$$

and so on.
b) Substituting the results from a) unto 2 ave get

$$
\begin{aligned}
& \mathcal{L}=-\frac{E^{2}}{\frac{r^{2}-v_{0}^{2}}{e^{2}}+\frac{\dot{r}^{2}}{r^{2}}}+\frac{1}{r^{2}}-\frac{v_{0}^{2}}{r^{2}} \\
& \Rightarrow\left.\frac{1}{r^{2}} \dot{r}_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=-\varepsilon \\
& 2\left(\frac{r^{2}}{2}-\frac{r_{0}^{2}}{e^{2}}\right)\left(\varepsilon+\frac{\vec{k}^{2}}{r^{2}}\right)=\frac{1}{2} E^{2} \\
& \Rightarrow V(r)=\frac{1}{2}\left(\frac{r^{2}}{l^{2}}-\frac{v_{0}^{2}}{r^{2}}\right)\left(\varepsilon+\frac{\vec{k}^{2}}{r^{2}}\right)
\end{aligned}
$$

when $\vec{k}^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$ and $\varepsilon=0,1$ for null and timeline geoclosis.
Massive particles \rightarrow limelike gochosis $(\varepsilon=1)$

$$
\begin{aligned}
& V(r)=\frac{1}{2}\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{0}^{2}}{r^{2}}\right)\left(1+\frac{\vec{k}^{2}}{r^{2}}\right) \\
& V^{\prime}(r)=\frac{r}{l^{2}}+\frac{r_{0}^{2}}{r^{3}}+\frac{2 \vec{k}^{2} r_{0}^{2}}{r^{5}}>0
\end{aligned}
$$

$\Rightarrow V(r)$ doesnit have extrema

$$
\begin{aligned}
& V(r) \sim-\frac{r_{0}^{2} \vec{k}^{2}}{2 r^{4}} \text { as } r \rightarrow 0 \\
& V(r) \sim \frac{r^{2}}{2 l^{2}} \text { as } r \rightarrow \infty
\end{aligned}
$$

$$
V(r)=0 @ \frac{r^{2}}{\ell^{2}}-\frac{r_{0}^{2}}{r^{2}}=0 \Rightarrow r_{+}=\left(e r_{0}\right)^{1 / 2}
$$

Thus, $V(r)$ looks lite

From the shape of $V(r)$ it follows that massive particles which indically travel bowonds $r \rightarrow \infty$ will reach a maximum $r=r_{*}$ given by

$$
V\left(r_{*}\right)=\frac{1}{2} E^{2}
$$

and then they'll bone back and reach $r=0$ in finite lime. Particles which initially travel
to wands smaller r will inevitably reach $r=0$ in finite time.
c) Rachal timelke geoclesics $(\vec{k}=0)$ are given by

$$
\dot{r}^{2}+\left(\frac{r^{2}}{l^{2}}-\frac{r_{0}^{2}}{r^{2}}\right)=E^{2}
$$

when e $\dot{r}=\frac{d r}{d \tau}$ and τ is the popes time.

$$
\Rightarrow \quad \frac{d r}{d \tau}=-\sqrt{E^{2}-\left(\frac{r^{2}}{\ell^{2}}-\frac{r_{0}^{2}}{r^{2}}\right)}
$$

and we pick the "-" sign became the particle is travelling inwards. Then, the proper time taken is given by:

$$
\begin{aligned}
\Delta \tau & =-\int_{r_{*}}^{0} d r \frac{1}{\sqrt{E^{2}-\left(\frac{r^{2}}{e^{2}}-\frac{r_{0}^{2}}{r^{2}}\right)}} \\
& =\frac{l}{2}\left[\arctan \left(\frac{E^{2}-2 r_{r}^{2} / e^{2}}{2 \sqrt{E^{2} r_{*}^{2} / e^{2}-r_{4}^{4} / e^{4}+r_{0}^{2} / e^{2}}}\right)-\arctan \left(\frac{E^{2}}{2 r_{0} / l}\right)\right]
\end{aligned}
$$

