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Plan

I Geometric Brownian Motion for representing stock prices;
I Learn how to simulate stock prices from a GBM/lognormal
model;

I How good is the log-normal model?
I Compare log-normal model to market data
I Stylized facts
I Better models

I Stochastic volatility models
I An autoregressive model
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EMH

I Competition among the participants ensures that new
information regarding securities is rapidly absorbed and
reflected in prices.

I If security prices reflect all available information, the market is
said to be effi cient.

I Testing Weak form Effi ciency: Random Model of Stock Prices
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Brownian Motion

I Brownian motion is a random walk occurring in continuous
time

I with movements that are continuous rather than discrete

I Brownian motion is traditionally regarded as discovered by the
botanist Robert Brown in 1827.

I study of pollen particles floating in water under the
microscope: pollen grains executing a random motion.

I Louis Bachelier in 1900 in his PhD thesis "The theory of
speculation" used Brownian Motion to analyse the movements
of the Paris stock exchange index.
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Standard Brownian Motion

Definition
Standard Brownian Motion, SBM, is a stochastic process
{Bt : t ≥ 0}, with state space S = R (set of real numbers) and
the following defining properties:

I Definition
1. B0 = 0
2. Independent increments: Bt − Bs is independent of
{Br : r ≤ s}, where s < t

3. Stationary increments: Distribution of Bt − Bs depends only
on (t − s), where s < t;the change in the value of the process
over any two non- overlapping periods are statistically
independent

4. Gaussian increments: Bt − Bs ∼ N(0, t − s)
5. Continuity: Bt has continuous sample paths
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Brownian Motion

Definition
Brownian Motion, BM, is a stochastic process Wt , with state
space S = R (set of real numbers) and the following defining
properties:

1. Independent increments: Wt −Ws is independent of
{Wr : r ≤ s}, where s < t.

2. Stationary increments: Distribution of Wt −Ws depends only
on (t − s), where s < t.

3. Gaussian increments: Wt −Ws ∼ N(µ(t − s), σ2(t − s)).
4. Continuity: Wt has continuous sample paths.
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Relationship between SBM and BM

I Wt (BM) can be obtained from Bt (SBM) by
Wt = W0 + µt + σBt

I µ - drift parameter and σ- volatility
I SBM can be obtained from BM by setting µ = 0, σ = 1 and
W0 = 0.

I A Geometric Brownian Motion (GBM) is
St = exp (Wt ) = S0 exp (µt + σBt )
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Modelling Stock Prices
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Geometric Brownian Motion (GBM) revisited

Consider the stock St with the stochastic differential equation:

dSt = αStdt + σStdBt

I want to find and expression for St
Standard Brownian Motion is nowhere differentiable despite the
fact that it is continuous everywhere

1. I SBM is not a smooth function
I Can I use stochastic calculus to find an explicit formula for St ?
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Ito’s Lemma

Ito’s Lemma Let Xt be a stochastic process satisfying
dXt = YtdBt + Ztdt and let f (t,Xt ) be a real-valued function,
twice partially differentiable with respect to x and once with
respect to t. Then f (t,Xt ) is also a stochastic process and is given
by:

df (t,Xt ) =
∂f

∂Xt
YtdBt +

[
∂f
∂t
+

∂f
∂Xt

Zt +
1
2

∂2f
∂X 2t

Y 2t

]
dt.
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Geometric Brownian Motion (GBM) revisited

Some intuition:

1
St
dSt = αdt + σdBt

If we were dealing with an ordinary integral integration would
lead to:

ln
(
St
S0

)
= αt + σBt

So
St = S0 exp (αt + σBt )

Applying Ito’s lemma to f (t,St ) = ln St :
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Geometric Brownian Motion (GBM) revisited

Let Yt = σSt and Zt = αSt

d ln St =
1
St

σStdBt +
[
0+

1
St

αSt +
1
2

(
− 1
S2t

)
σ2S2t

]
dt

=

(
α− 1

2
σ2
)
dt + σdBt
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Geometric Brownian Motion (GBM) revisited

Thus:

ln St = ln S0 +
(

α− 1
2

σ2
)
t + σBt

St = S0 exp
[(

α− 1
2

σ2
)
t + σBt

]
Earlier we defined GBM as St = S0 exp (µt + σBt ), thus:

I St Geometric Brownian Motion with drift parameter
µ = α− 1

2σ2 and volatility σ.
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A Continuous -Time LogNormal Model for Security Prices

Another name for GBM: For T > t :
log (ST )− log (St ) ∼ N(µ(T − t), σ2(T − t))
I µ and σ specific to the investment/security
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A reminder of the lognormal distribution

If r1 ∼ N
(
µ, σ2

)
then S1 = exp (r1) S0 then

S1/S0 ∼Lognormal
(
µ, σ2

)
⇔ ln (S1/S0) ∼ N

(
µ, σ2

)
E (S1) = S0 exp

(
µ+ σ2/2

)
Var (S1) = exp

(
σ2 − 1

)
exp

(
2µ+ σ2

)
For S0 = 1 :
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A reminder of the lognormal distribution

Example (past exam exercise)

If log (ST )− log (St ) ≡ log
(
ST
St

)
∼ N(µ(u − t), σ2(u − t)) then

ST = St
ST
St
= Ste

log
(
ST
St

)

E (ST ) = StE
(
e
log
(
ST
St

))
Then E

(
e
log
(
ST
St

))
= exp (T − t)

(
µ+ σ2/2

)
and hence

E (ST ) = StE
(
e
log
(
ST
St

))
= St exp (T − t)

(
µ+ σ2/2

)
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Simulation of Stock Prices
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Simulation of Stock Prices
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Simulation of Stock Prices
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Simulation of Stock Prices
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Empirical Data vs. Simulated Data

21 of 13



Empirical Data vs. Simulated Data
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Clustering
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Log-Normal Model
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Sample Distribution
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Stylised facts
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Stochastic Volatility Models
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First Idea - Log-normal Volatility
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Autoregressive Volatility

29 of 13



What went wrong?
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Stationary AR(1) Model
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Stationary AR(1) Model
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Stationary AR(1) Model
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First Test with AR(1)
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First Test with AR(1)
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How to fit parameters?
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How to fit parameters?
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How to fit parameters? Naive parameter fit
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Comparison with fitted parameters
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