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» Geometric Brownian Motion for representing stock prices;
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Learn how to simulate stock prices from a GBM/lognormal
model;

How good is the log-normal model?
Compare log-normal model to market data
Stylized facts

Better models

» Stochastic volatility models
> An autoregressive model




» Competition among the participants ensures that new
information regarding securities is rapidly absorbed and
reflected in prices.

> If security prices reflect all available information, the market is
said to be efficient.

> Testing Weak form Efficiency: Random Model of Stock Prices




Brownian Motion

» Brownian motion is a random walk occurring in continuous
time
» with movements that are continuous rather than discrete
» Brownian motion is traditionally regarded as discovered by the
botanist Robert Brown in 1827.

» study of pollen particles floating in water under the
microscope: pollen grains executing a random motion.
» Louis Bachelier in 1900 in his PhD thesis "The theory of
speculation" used Brownian Motion to analyse the movements
of the Paris stock exchange index.




Standard Brownian Motion

Definition

Standard Brownian Motion, SBM, is a stochastic process
{B; : t > 0}, with state space S = R (set of real numbers) and
the following defining properties:

» Definition

1. Bp=0

2. Independent increments: By — Bs is independent of
{Br:r<s}, wheres <t

3. Stationary increments: Distribution of B; — Bs depends only
on (t — 5), where s < t;the change in the value of the process
over any two non- overlapping periods are statistically
independent

4. Gaussian increments: By — Bs ~ N(0,t — s)

5. Continuity: By has continuous sample paths




Brownian Motion

Definition

Brownian Motion, BM, is a stochastic process W, with state
space S = R (set of real numbers) and the following defining
properties:

1. Independent increments: W; — W; is independent of
{W, :r <s}, where s < t.

2. Stationary increments: Distribution of W; — Ws depends only
on (t—s), where s < t.

3. Gaussian increments: W; — Ws ~ N(u(t —s),02(t —s)).

4. Continuity: W; has continuous sample paths.




Relationship between SBM and BM

v

W; (BM) can be obtained from B; (SBM) by

Wiy = Wy + ut +0B;

u - drift parameter and o- volatility

SBM can be obtained from BM by setting 4 =0, ¢ =1 and
Wy = 0.

A Geometric Brownian Motion (GBM) is

S¢ =exp (W) = Soexp (ut + 0B)

v
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Modelling Stock Prices
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Geometric Brownian Motion (GBM) revisited

Consider the stock S; with the stochastic differential equation:

dSt = lxstdt + O’StdBt

| want to find and expression for S;
Standard Brownian Motion is nowhere differentiable despite the
fact that it is continuous everywhere

1. » SBM is not a smooth function
» Can | use stochastic calculus to find an explicit formula for 5;?




[to's Lemma

Ito’s Lemma Let X; be a stochastic process satisfying

dX; = YidB: + Zidt and let f(t, X;) be a real-valued function,
twice partially differentiable with respect to x and once with
respect to t. Then f(t, X;) is also a stochastic process and is given
by:

f f f 2f
a—YtdBtJr ‘i+a—z+ 19 Y2 | dt.
0X;

df(t, Xe) = ot | oX, 20X2




Geometric Brownian Motion (GBM) revisited

Some intuition:

1
7d5t = adt + UdBt
St

If we were dealing with an ordinary integral integration would

lead to:
S
In (5;> =uwat+0B;

So
St = 50 exp (ﬂét + UBt>

Applying Ito's lemma to f (t,S;) =1InS; :




Geometric Brownian Motion (GBM) revisited

Let Yt = USt and Zt = lxst

_ 1 1 L_1) 2g
dlnSt = Sto-StdBt—i_ |:0+ Stlxst—i‘ 5 ( 5?)0- 5t:| dt

= (a — ;a2> dt + odB;




Geometric Brownian Motion (GBM) revisited

Thus:
15
InS; = InSg+(a— EU’ t+ oB;
1o
St = Soexp IX—E(T t—|—0'8t
Earlier we defined GBM as S; = Spexp (pt + 0B;), thus:

» S, Geometric Brownian Motion with drift parameter

p =a— 10?2 and volatility o.




A Continuous -Time LogNormal Model for Security Prices

Another name for GBM: For T > t:
log (S7) —log (S¢) ~ N(u(T —t),d?(T —t))

> 1 and o specific to the investment/security




A reminder of the lognormal distribution

If i~ N (p,0?) then S; = exp (r1) So then
S1/So ~Lognormal(p,02) < In(S1/So) ~ N (p,0?)

E(Sl) = 50 exp (‘I/l+0'2/2)

Var (S1) = exp (02 — 1) exp (2u + 0%)

For S§p =1:
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A reminder of the lognormal distribution

Example (past exam exercise)
If log (S7) — log (S¢) = log (%) ~ N(p(u—t),0?(u—t)) then

St = Stf;: - Stelog(%)

E(S7) = S:E (e'°g(ss?)>

Then E (elog(§)> =exp (T —t) (p+0°/2) and hence

E(S7) =S:E <e|0g(i7t—)> =Seexp (T —t) (n+0°/2)




Simulation of Stock Prices

Given N iid variables X; with an assumed distribution,2
e.g. V' (u.c%) estimate the model parameters (here #.6)

Here: X; daily log-returns;
model parameters: mean value x and variance ¢°.

Convenient approximation: Empirical mean & Variance:

u=X=X+..+Xy)/N Excel:
use AVERAGE & STDEV.S

|- ~
¢~ X — X)?
N—IE“ )




Simulation of Stock Prices

» Parameter estimate éN of parameter@ called
. LIff E(By) =
+ consistent, iff P(GN N_’—"'i 0)=1
*Mean Square Error (MSE):
MSE =E ((éN - 9)2) = bias(@N)2 + var(@N)
*Note: empirical mean and variance are unbiased and
consistent N

*Uncorrected sample variance —2 (X;— X)* is biased
but consistent i=1




Simulation of Stock Prices

B W N =

. Download data (e.g. Yahoo Finance)

. Read data in Excel and clean data

. Compute daily log-returns using LN()

. Estimate parameters p.c using AVERAGE() and

STDEV.S()

. Simulate X, by samples of normal random variables;

evaluate S, =S, exp(z:;l]x,)— see previous slides.

. Investigate the model, e.g. plot values, returns or a

histogram




Simulation of Stock Prices

Visual comparison (HSBC):
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Spot the real data”?




Empirical Data vs. Simulated Data

Visual comparison (HSBC log-returns):
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Spot the real data?




Empirical Data vs. Simulated Data

2000 2002 2004 2006 2008 2010 2012 2004 2016 246

+ Spikes: single large gains & losses
+ indicator agains a normal distribution

+ Clustering of high returns in absolute values
+ indicator for dependence of subsequent returns




Clustering

0.1

Subsequent returns o
seem to be dependent o

-0.05
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But we noticed
no autocorrelation: °®

o1y gorr=-0.016

-0.1 -0.08 0 0.05 0.1

xl
How does this work? No correlation # Independence
Compare Cov(X, X?), for X ~ #(0.1)
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Log-Normal Model

Consider EMH:

*Subsequent returns uncorrelated,
but their magnitude might be correlated

-Empirical values for HSBC (20 years, i.e. 5k values)

corr(X,. X,, ) & —0.0160, no statistical significance;

corr(X2. X2 ) ~ 0.1661,  statistically significant

( Note: In lognormal model X, iid = corr(X2,X2,) = 0)

*Magnitude of returns: standard deviation o (volatility)
Clusters known as ,volatility clusters®




Sample Distribution

«Sampled log-return values for 20 years of HSBC (blue]

Fitted normal distribution (red)
45
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Stylised facts

Let’s collect these stylised facts:

*No linear autocorrelation: corr(R, R, ;) = 0: (confirms
weak form of EMH)

-Volatility clustering: corr(R%, R?;) > 0. We can observe
periods of large volatility and of small volatility;

*Heavy talls: High losses and gains much more likely
than for normally distributed random variables.




Stochastic Volatility Models

Observation: Time-dependent volatility;
not available in Lognormal model

Approach X, ~ ./ (u,6?) (no longer iid),
with stochastic process o

X=u+0Z. Z~N0.1)

With ¢; and Z, independent




First Idea - Log-normal Volatility

Using ¢, ~ Lognormal(t,. 6,,))

Volatility (s, )

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Log-returns:

L L L L L L L L L L
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Observation: still no volatility clustering with iid volatility




Autoregressive Volatility

+ 6, shall correlate with 6,1, e.g. with a,v > 0,
€f ~ ‘/V(O’l) ||d (GE)TENaS

o,=a+o,_|+Vve, o0p=a

Resulting log-return:
200 — ;

-200 -

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018




What went wrong?

2 ..
sIncrement of 6, 6,—6,_1 = a+ve ~ N(a.v7) iid

*What does this mean for ¢,?

o, ~ N (a(t + 1),v%)

We need a stationary process

i.e.o; has the same distribution for each t




Stationary AR(1) Model

AR(1): autoregressive with dependency on one past value

()7 0,=a+fo,_;+ve, €~ 4(0,1)id

is weakly stationary for |,B| < 1.

* Expectation value: [E(g,) = 1

2

*Variance: Var(s,) = SV
I=p ‘See next slides

*Autocorrelation: corr(s,. 0, ) = f




Stationary AR(1) Model

we have 0, =Q +ﬂ0}71 + ve,

I g --_ 7--7-'\\ ;/"'_ \ //""J L""-\\l
\\jﬁ{l //I '\. ‘_ff -”/) I‘\\_ufi(}rﬂ//l
[#4
and Var(g;,) = Var(a + po, | +ve,) = [ Var(o, ) + V2 Var(e,)
~ 2
2 v?
= 0" =
L p




Stationary AR(1) Model

o,=a-+ ﬂo}—l + V€, How to compute the autocorrelation?

__C‘?V(_Q}j '_9}71) = Eloo, | — ElolElo,_]

insert eq for Jt‘--. -

( indep. of 6,_;.& '
\'- -~

" =Ela+ o +ve)o,_ |- Elo.,

" =aklo,_ ||+ PElc2,| + vElg|E[o,_ ] - Elo,

‘= Elo, J(1-p).)

S ElI=0 = (1 = B— 1)E[o,_,]* + PE[c2

]

= ﬁ([E[O-rl)—l] - [E[Gr—l]z) = pVar(e,_,) = ﬂgz

Cov(c.0,_) po?

—> Corr(e,,0,_1) =

\/Var(s,)Var(s,_;) TR

p




First Test with AR(1)

Computational approximation:

C}'O:W, 6,=a+ fo,_,+ve, €~ N0,]1)id, teN
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First Test with AR(1)

« Volatility clusters can be observed
* Improvement can be seen in histogram:

Empirical data (HSBC) ~AR(1) Lognormal
40 ] 40 1w )
530 ESO ;30
E 20 520 1 E 2
10 1 10 | 10
[ — 0-— — ?0.1 -0.05 o 0.05
01 005 [ 0.08 0.1 01 005 o 0.05 o. log-retum
log-retum log-retum

Heavy tails observed in AR(1)




How to fit parameters?

‘Model parametersa.f.v: o,=a+ flo,_; + ve,
-Fit

* expectation value E(q,)

* variance Var(o,)

+ and autocorrelation corr(s,, 6,_1)

and compute parameters:

p = corr(e,.0,_;)
a=(1-pE@)
vZ = (1 — %) Var(s))




How to fit parameters?

Problem: how to find empirical volatility?
Recall parameter estimation (as for Iognormal model):
- E.g. forX; iid, estimate ;2 o Z (X, — X)?
—1

+ With stochastic volatility mocIeIsXI are not independent

- o, different for each X, (impossible to estimate variance
with a single data point)
As a compromise, local estimates are used
Note:

Estimation of parameters in financial models is a hard task and
daily returns may not be sufficient for a reliable estimate!




How to fit parameters? Naive parameter fit

1. Estimate local variance using 5 neighbouring values
of the log-return: .,

?x1/4 Y (X,-X)’
i=r—2
Use this time-series to estimate

E(s,), Var(s,), and corr(s,. 6,_;)

Estimated local o1

volatility (HSBC): 4

C(o,) = 0.0138 & 0.06 | }
Var(e,) ~ 1.05 - 107 004 MM W , | |
cort(a,0,_) = 0.9013 nﬁ Wil A M

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018




Comparison with fitted parameters

AR(1), fitted Empirical
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