Next Monchy Revisian for Wek 4 - Thek 9 $+$ modane tribier (MTH 5130 Number Theny)
No lectures on 29103 (Next Fruch
01104
\$6 Matries,
Let $\left(R_{1}, \pm, X\right)$ be a fing.
Dof Let
$M_{2}(R)$ be the set it matrics

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad a \cdot b c, d \in R
$$

with arditicen $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$
definitian

$$
=\left(\begin{array}{cc}
a+a^{\prime} & b+b^{\prime} \\
2= & = \\
c+c^{\prime} & d+d^{\prime} \\
\bar{p} & p
\end{array}\right)
$$

multidicretion.

$$
\begin{aligned}
&\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \\
&=\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
\sim & \\
\sim a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right) \\
& a \times a^{\prime} \\
&
\end{aligned}
$$

Theorem 34
$M_{2}(R)$ is a ting.
If R is a ring with identity,

$$
\begin{aligned}
& \text { (ie. } \exists 1_{R} \text { st. } \\
& \quad a \times 1=1 \times a=a)
\end{aligned}
$$

for $M_{2}(R)$ is a ling wi identity
R

The identity wiriti t in $M_{2}(\mathbb{R})$

$$
\left(\begin{array}{ll}
O_{R} & O_{R} \\
O_{R} & O_{R}
\end{array}\right)
$$

whow $O_{R}:=$ to isentity dement

$$
\begin{aligned}
& \text { w.r.t.t. of } R \\
& (R+2)
\end{aligned}
$$

If R is a fing with Edantily I_{R} fien $M_{2}(R)$ LS $\left(\begin{array}{ll}I_{R} & O_{R} \\ O_{R} & I_{R}\end{array}\right)$ Gs its (multiolicatoo) identity.

$$
\begin{aligned}
& \operatorname{Index}_{d_{1}} \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1_{R} & \text { OR } \\
\text { OR } & 1_{R}
\end{array}\right) \\
& \begin{array}{l}
a \cdot 1_{R}=a \\
\text { belare }
\end{array}=\left(\begin{array}{ll}
a \cdot 1_{R}+b \cdot O_{R} & a \cdot O_{R}+b \cdot 1_{R} \\
\sim_{2} \cdot 1_{R}+d \cdot O_{R} & c \cdot O_{R}+d \cdot 1_{R}
\end{array}\right) \\
& \text { IR is the idendy } \\
& =\left(\begin{array}{cc}
a+O_{R} & O_{R}+b \\
c+O_{R} & O_{R}+d
\end{array}\right) \\
& b \cdot O_{R}=O_{R} \cdot b \\
& =O_{R}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\text { Ex Ched }\left(\begin{array}{ll}
1 p & 0 \\
\text { OR } & 2 R
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{array}
$$

2 Contrany to R[x], (Campre this
 even if R is commatfice

$$
\text { (ie. } \left.a_{b}=b a, \theta_{a}, b\right) \text {) }
$$

$M_{2}(R)$ is never commontative
Let's see this in an examie

$$
\begin{aligned}
& \text { Let } R=\mathbb{F}_{2}=\left\{[0]_{2},[1]_{2}\right\} \\
& A=\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[0]} & {[1]}
\end{array}\right) \in M_{2}\left(\mathbb{F}_{2}\right) \\
& B=\left(\begin{array}{cc}
{[1]} & {[1\rceil} \\
{[1]} & {[1\rceil}
\end{array}\right) \in M_{2}\left|\mathbb{F}_{2}\right| \\
& A B=\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[0} & - \\
{[0} & {[1]}
\end{array}\right)\left(\begin{array}{ll}
{[1]} & \Gamma_{1} 1 \\
{[1]} & \left.\Gamma_{1}\right\rceil
\end{array}\right) \\
& =\left(\begin{array}{rl}
{[1] \cdot[1]+[1][1]} & =[1]+[1] \\
& =[2]=[0]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
{[0\rceil^{c l}} & {[0\rceil} \\
{[1]} & {[1\rceil}
\end{array}\right)< \\
& B A=\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[1]} & {[1]}
\end{array}\right)\left(\begin{array}{ll}
{[1]} & {[1]} \\
{[0]} & {[1]}
\end{array}\right) \\
& \left.=\left\lvert\, \begin{array}{lc}
{[1]\lceil 1]+[1][0]} & {[1][1]+[1][1]} \\
=[1]+[0]=[1] & =[1]+[1]
\end{array}\right.\right) \\
& =[2]=[0] \\
& [1][1]+[1][0] \quad[2][1]+[1][1]) \\
& =[1]+\lceil 0\rceil=[1\rceil=\lceil 1\rceil+[1] \\
& =\left[\begin{array}{rl}
2
\end{array}\right]=[0]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
{[1]} & {[0]} \\
{[1]} & \lceil 0
\end{array}\right) \leftarrow \\
& \text { So } A B \neq B A \\
& \text { Theratie } M_{2}\left(\mathbb{F}_{2}\right) \\
& \text { is not a commontatio } \\
& \text { fing. } \\
& \text { Prop3s }\left(R_{1}+, x\right) \\
& \text { a ting }
\end{aligned}
$$

If R is a ting with identity but not a Hing with te property that $\forall a, b \in R$ $a b=O_{R}$,
then $M_{2}(R)$ is neither Commutate
not a divisor ting.
a ting that datififios
all te brooms a fold
hees to satisty except

$$
a b=b a \quad \forall a b
$$

RL An example is a fing excluaded above
i\$... (G.*) a growp
Define (R, t, x) by

$$
\begin{aligned}
& a+b=a * b \quad a \\
& a \times b=e
\end{aligned}
$$

RE An example of a ting that is cusiteved in Prop 35 is a field!
since \mathbb{F}_{2} is a foll,
$\left(\mathbb{F}_{p}\right)$ Prop 35 is Cañstent with to example.

If The assumption amounts to: thou exist $a, b \in R$
$a b \neq 0$
By Proplb, wither a nor b

$$
\text { i\$ } 0
$$

(If it were, ten $a b=0$)
To show that $M_{2}(R)$ is not
commentative,

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
\end{aligned} \underbrace{\pi}_{B} a \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
\hline & 0
\end{array}\right)
$$

$$
\underbrace{\left(\begin{array}{ll}
\pi & b \\
0 & 0
\end{array}\right)}_{B} \underbrace{\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)}_{A}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

sine $a b \neq 0, \quad A B \neq B A$.
Therefore $M_{2}(R)$ is not commute fine
To show that $M 2(2)$ is not
a division Hing,
find an element in $M_{2}(R)$ that does NOI have muttiplecatice
inverse in $M_{2}(R)$
More precisely, to matix

$$
\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)
$$

clos noI have a muntipicanto inveres, i.e. no matrix $B \in M_{2}(R)$
salistes $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) B=\left(\begin{array}{ll}\eta_{2} & O_{R} \\ O_{R} & 1_{R}\end{array}\right)$

$$
\rightarrow B\left(\begin{array}{ll}
o b \\
0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & O_{R} \\
R & A_{2} \\
R
\end{array}\right)
$$

To prove this, stipiose for a contucuiction that such a matrix B exists (If this leans to a contraction, we win)

$$
\begin{aligned}
& B\left(\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right)=B\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& (B \times 1) \\
& \left(B\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
9 & 0 \\
0 & 0
\end{array}\right) \\
& \Perp\left(\begin{array}{ll}
9 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Since $a \neq 0$
we have a couttaliction

