MTH5113 (2023/24): Problem Sheet 9

All coursework should be submitted individually.

- Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 2.
(1) (Warm-up)
(a) Consider the (real-valued) function

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=x y^{2} z^{3}
$$

as well as the parametric surface

$$
\mathbf{P}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(1, u, v)
$$

Compute the surface integral of F over \mathbf{P}.
(b) Consider the (real-valued) function

$$
\mathrm{G}: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \mathrm{G}(x, y, z)=x^{2}+y^{2}
$$

as well as the parametric surface

$$
\tau:(0,2 \pi) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \tau(u, v)=(v \cos u, v \sin u, v)
$$

Compute the surface integral of G over τ.
(2) (Intro to surface integrals) One can also define an intermediate notion of surface integration of vector fields over parametric surfaces. More specifically:

Definition. Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a parametric surface, and let \mathbf{F} be a vector field that is defined on the image of γ. We then define the surface integral of \mathbf{F} over σ by

$$
\iint_{\sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A}=\iint_{\mathrm{u}}\left\{\mathbf{F}(\sigma(u, v)) \cdot\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right]_{\sigma(u, v)}\right\} \mathrm{d} u \mathrm{~d} v
$$

(a) Consider the vector field \mathbf{F} on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=\left(y, z^{5800} e^{x^{2000}+46 y}{ }^{1523}, x\right)_{(x, y, z)}
$$

and let \mathbf{P} be the parametric plane

$$
\mathbf{P}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(1, u, v)
$$

Compute the surface integral of \mathbf{F} over \mathbf{P}.
(b) Consider the vector field \mathbf{G} on \mathbb{R}^{3} given by

$$
\mathbf{G}(x, y, z)=\left(z, z, x^{2}+y^{2}\right)_{(x, y, z)}
$$

and let τ be the parametric torus

$$
\tau:(0,2 \pi) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \tau(u, v)=(v \cos u, v \sin u, v) .
$$

Compute the surface integral of \mathbf{G} over τ.
(c) Consider the vector field \mathbf{H} on \mathbb{R}^{3} given by

$$
\mathbf{H}(x, y, z)=(-x,-y, z)_{(x, y, z)}
$$

and let \mathbf{q} be the (regular) parametric surface

$$
\mathbf{q}:(0,1) \times(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{q}(u, v)=\left(u, v, u^{2}+v^{2}\right) .
$$

Compute the surface integral of \mathbf{H} over \mathbf{q}.
(3) (A Survey of Integration) Let S denote the set

$$
S=\left\{\left(u, v, u^{2}-v^{2}\right) \in \mathbb{R}^{3} \mid(u, v) \in(0,1) \times(0,1)\right\} .
$$

(a) Show that S is a surface. In addition, give an injective parametrisation of S whose image is precisely all of S.
(b) Compute the surface integral over S of the real-valued function

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=x y
$$

(The double integral you get from expanding the surface integral is not so pleasant; you will probably have to use the method of substitution twice to compute it.)
(c) Let us also assign to S the upward-facing orientation, i.e. the orientation in the positive z-direction. Then, compute the surface integral over S of the vector field

$$
\mathbf{G}(x, y, z)=\left(x y^{2}, y x^{2}, 1\right)_{(x, y, z)}, \quad(x, y, z) \in \mathbb{R}^{3} .
$$

(4) [Marked] Let C denote the following disconnected surface:

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1 \cup x^{2}+y^{2}=4,-1<z<1\right\} .
$$

which describes a small cylinder surrounded by a larger cylinder. Moreover, let us orient \mathcal{C} such that the outer cylinder has outward orientation and the inner cylinder is oriented inwards.
(a) Sketch this surface.
(b) Compute the surface integral over C of the function

$$
G: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad G(x, y, z)=-\frac{x^{2} y^{2}}{66}+\frac{z^{2}}{8}
$$

Some useful hints: $2 \sin (x) \cos (x)=\sin (2 x)$ and $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$.
(c) Compute the surface integral over \mathbf{C} of the vector field \mathbf{H} on \mathbb{R}^{3} given by

$$
\mathbf{H}(x, y, z)=(y, x, z)_{(x, y, z)},
$$

(5) [Tutorial]

(a) Consider the surface (you may assume this is indeed a surface)

$$
\mathcal{P}=\left\{\left(u, v, u^{4}+v\right) \in \mathbb{R}^{3} \mid(u, v) \in(0,1) \times(-1,1)\right\} .
$$

Compute the surface integral over \mathcal{P} of the following function:

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad F(x, y, z)=6 x^{5}
$$

(b) Consider the sphere,

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

and let \mathbb{S}^{2} be given the "outward-facing" orientation. Compute the surface integral over \mathbb{S}^{2} of the vector field \mathbf{F} on \mathbb{R}^{3} defined by the formula

$$
\mathbf{F}(x, y, z)=\left(0,0, z^{3}\right)_{(x, y, z)}
$$

(6) (A-levels, revisited)
(a) Show that the surface area of a sphere of radius $\mathrm{r}>0$,

$$
S_{r}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}\right\}
$$

is equal to $4 \pi r^{2}$.
(b) Show that the area of the side of a cone with base radius $r>0$ and height $h>0$,

$$
C_{r, h}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0<z<h, x^{2}+y^{2}=r^{2}\left(1-\frac{z}{h}\right)^{2}\right\}
$$

is equal to $\pi r \sqrt{r^{2}+h^{2}}$.
(7) (Reversal of orientations) Let $S \subseteq \mathbb{R}^{3}$ be an oriented surface, and let $\sigma: U \rightarrow S$ be a parametrisation of S. Moreover, define the set

$$
\mathrm{u}_{\mathrm{r}}=\{(v, \mathrm{u}) \mid(\mathrm{u}, v) \in \mathrm{u}\}
$$

and define the parametric surface

$$
\sigma_{\mathrm{r}}: \mathrm{U}_{\mathrm{r}} \rightarrow \mathbb{R}^{3}, \quad \sigma_{\mathrm{r}}(v, u)=\sigma(u, v) .
$$

In other words, σ_{r} is precisely σ but with the roles of u and v reversed.
(a) Show that for any $(u, v) \in U$,

$$
\partial_{1} \sigma_{r}(v, u) \times \partial_{2} \sigma_{r}(v, u)=-\left[\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right] .
$$

(b) Show that σ_{r} is also a parametrisation of S, and that σ_{r} has the same image as σ.
(c) Use the formula from part (a) to conclude that if σ generates an orientation O of S , then σ_{r} generates the orientation opposite to O .
(8) (The paradox of Gabriel's horn) Consider the surface of revolution

$$
G=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, y^{2}+z^{2}=\frac{1}{x^{2}}\right., x>1\right\}
$$

which is sometimes nicknamed Gabriel's horn. (Before proceeding, you should search for "Gabriel's horn" on Google Images to see an illustration of G.)
(a) Show that G has infinite surface area.
(b) Show that the interior of G,

$$
I=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, y^{2}+z^{2} \leq \frac{1}{x^{2}}\right., x>1\right\}
$$

has finite volume.
In other words, you can fill up the inside of the "horn" with a finite amount of paint, but you cannot paint the "horn" itself using a finite amount of paint!

