WEEK 10

Black holes
We will consider Sch. spacetime fer all values of the racial coondimate r

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{d r^{2}}{1-2 M / r}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

To understand the native of black holes and the nom-trivial causal stenctive of the spacetime we nell to understand the light cones. To do this we consider racial (ie., $\dot{\theta}=\dot{\phi}=0$) null geodesics

$$
\begin{aligned}
& 0=g_{a b} \dot{x}^{a} \dot{x}^{b}=-\left(1-\frac{2 M}{r}\right)\left(\frac{d t}{d \lambda}\right)^{2}+\frac{1}{1-\frac{2 M}{r}}\left(\frac{d r}{d \lambda}\right)^{2} \\
& \Rightarrow \frac{d t}{d r}= \pm \frac{1}{1-\frac{2 M}{r}}
\end{aligned}
$$

This expansion gives the slopes of the light cones in the (t, r) conndinatios. For $r \rightarrow \infty, \frac{d t}{d r} \rightarrow \pm 1$ like in Minkowski space, but $\frac{d t}{d r} \rightarrow \pm \infty$ as $r \rightarrow 2 M$. This suggests that acconding to obscwer for away, it would take infinite time for a light nay decanting
from $r=2 M$ to reach them, similarly, it would seem to take infinite time for a light nay 10 reach $r=2 M$. However, this is m illusion caused by the coundinate singularity at $r=2 \mathrm{M}$; an obsewer can fall towards smaller radii and clos $r=2 M$, but fan away obsevers would see the signals more and more slowly.
To see this, let's calculate the moper lime for radially an infalling obsewer (i.e., tirnetike geod) to reach $r=0$ from some $r=r_{0}>2 M$

$$
\begin{aligned}
& \quad\left(1-\frac{2 M}{r}\right) \dot{t}=E \\
& -1=g_{a b} \dot{x}^{a} \dot{x}^{b}=-\left(1-\frac{2 M}{r}\right)\left(\frac{d t}{d \tau}\right)^{2}+\frac{1}{1-2 M / r}\left(\frac{d r}{d \tau}\right)^{2} \\
& = \\
& =\frac{1}{1-\frac{2 M}{r}}\left(-E^{2}+\left(\frac{d r}{d \tau}\right)^{2}\right) \quad E=1 \text { : choice of energy } \\
& \Rightarrow \\
& \frac{d r}{d \tau}=\bigoplus_{1}^{t} \sqrt{-1+\frac{2 M}{r}+E^{2}}= \pm \sqrt{\frac{2 M}{r}} \\
& \Rightarrow \\
& \Delta \tau=\int_{\tau_{0}}^{\tau} d \tau=-\frac{1}{\sqrt{2 M}} \int_{r_{0}}^{d r} \sqrt{r}=\frac{2}{3 \sqrt{2 M}} r_{0}^{3 / 2}
\end{aligned}
$$

Note that paper time is an invariant, i.e., inelependent of the coondimates.
Going sade to the radial mull geodesics, we can integrate the equation to fine

$$
\begin{aligned}
& t=\int d t= \pm \int \frac{d r}{1-2 M / r}= \pm r_{*}+\text { wist } \\
& r_{*}=r+2 M \ln \left(\frac{r}{2 M}-1\right) \quad \text { tortoise coondimate } \\
& d r_{*}=\frac{d r}{1-2 M / r} \Rightarrow d r=\left(1-\frac{2 M}{r}\right) d r_{*}
\end{aligned}
$$

In terms of r_{*}, the Sch metric becomes:

$$
\begin{aligned}
d s^{2} & =-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{1}{1-2 M / r}\left[\left(1-\frac{2 M}{r}\right) d r_{*}\right]^{2}+r^{2} d \Omega_{(2)}^{2} \\
& =\left(1-\frac{2 M}{r}\right)\left(-d t^{2}+d r_{*}^{2}\right)+r^{2} d \Omega_{(2)}^{2}
\end{aligned}
$$

where r should be regarded as a function of r_{*}. In these coundinatos the light cones are $t= \pm r_{*}+$ cont, so loren close up, but the metric is still singular at $r=2 M$; in three coondimates the surface $r=2 M$ has been pushed to $r_{*}=-\infty$

To proceed we define coordinates adapted to rachael mull geodesics:
$v=t+r_{*} \rightarrow$ infalling radial null gears: $v=$ commit
$u=t-r_{*} \rightarrow$ outgoing radial null geods: $u=$ cont
Changing coundinatos (ingoing Eddington-Finkelstein)

$$
\begin{aligned}
t & =v-r_{*} \Rightarrow d t=d r-d r_{*}=d v-\frac{d r}{1-2 M / r} \\
\Rightarrow d s^{2} & =-\left(1-\frac{2 M}{r}\right)\left(d r-\frac{d r}{1-2 M / r}\right)^{2}+\frac{d r^{2}}{1-2 M / r}+r^{2} d \Omega_{(2)}^{2} \\
& =-\left(1-\frac{2 M}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega_{(2)}^{2}
\end{aligned}
$$

\rightarrow this metric is smooth and invertible at $r=2 M$, which shows that $r=2 M$ is a mere coondinate singularity in the original Schw metric.

- Radial mull geoduics in ingoing EF wondinates:

$$
\begin{aligned}
0=g_{a b} \dot{x}^{a} \dot{x}^{b} & =-\left(1-\frac{2 M}{r}\right) \dot{v}^{2}+2 \dot{v} \dot{r} \\
& =\dot{v}\left[-\left(1-\frac{2 M}{r}\right) \dot{v}+2 \dot{r}\right] \\
\Rightarrow \dot{v}=0 \rightarrow v & =\text { cont }
\end{aligned}
$$

$$
-\left(1-\frac{2 M}{v}\right) \dot{v}+2 \dot{r}=0 \Rightarrow \frac{d r}{d v}=\frac{\dot{r}}{\dot{v}}=\frac{2}{1-2 M / r}
$$

Fan away, ie., $r>2 M, \frac{d r}{d v}>0 \rightarrow r$ advances as v advances no those are outgoing. Than $v=$ cont are ingoing.
Note that in the coondimates the light cones are well-bchaved:

- Along ingoing null geodesics, $v=$ cont, r varies from ∞ to O, so it is possible to coss $r=2 M$. On the surface, the light cones tilt inwards (i.e, towards smaller r) since $\frac{d r}{d r}<0$ for $r<2 M$. The surface $r=2 M$ is a point of no return: inside this surface, al future directed paths go towards smaller r.

- $r=2 M$ is a point of no return: any obseuva (inctial or not) that dips below it can never escape. a surface past which particles can never escape to infinity is the event horizon of the Black hole

The went horizon is a null surface (i.e, the vectors tangent to it me null). Sine nothing can escape the went horizon home the name blade hole. A black hole is simply a region of spacetime separated from infinity by an went horizon
The notion of am event harigon is a global one. Locally, then is nothing special about the surface $r=2 M$

- Note that the interion of blade holes $(r<2 M)$ is essentially empty
- $r=0$ is a genuine singularity?: curvative and hance tidal forces become infinite!
- A Finkelotzin clagram is a repuesentation of the null geodesis in the (v, r) coondinates:

Fre a gennal stahic and sphecrically symmetric spacetione of the form

$$
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{(2)}^{2}
$$

with $f(r)$ vanishing at some $r=r_{+} \quad$ (i.e., $f\left(r_{+}\right)=0$) represents a slacle hole. Ingoing/outgoing EF coundinates that ane regulan at $r=r_{+}$can be found as follows:

$$
\begin{aligned}
& \text { ingoing: } d t=d r-\frac{d r}{f(r)} \\
& \Rightarrow d s^{2}=-f(r) d r^{2}+2 d r d r+r^{2} d \Omega_{(2)}^{2} \\
& \text { outgoing: } d t=d u+\frac{d r}{f(r)} \\
& \Rightarrow d s^{2}=-f(r) d u^{2}-2 d u d r+r^{2} d \Omega_{(2)}^{2}
\end{aligned}
$$

- More gunenal blade holes: Kens blade hole
- Must astrophysical objects, e.g., stans, galaxies, etc, rotate so if black holes form in natural astrophysical processes then they should a lo rotate.
- A rotating black lobe that is a solution of EVE was found in 1963 by Ken:

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M r}{\Sigma}\right) d t^{2}-\frac{4 M a r \sin ^{2} \theta}{\Sigma} d t d \phi+\frac{\Sigma}{\Delta} d r^{2} \\
& +\Sigma d \theta^{2}+\frac{\sin ^{2} \theta}{\Sigma}\left[\left(r^{2}+a^{2}\right)^{2}-a \Delta \sin ^{2} \theta\right] d \phi^{2} \\
\Delta= & r^{2}-2 M r+a^{2}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

M : mans
$a=J / M$: angular moncuntuzn/spin per unit mass.

- Event horizons ocam ut

$$
\Delta=0 \Rightarrow r_{ \pm}=M \pm \sqrt{M^{2}-a^{2}}
$$

so we need $\mu>a$
Then is a physical singularity at $\Sigma=0$
$\Rightarrow r=0$ and $\theta=\frac{\pi}{2} \rightarrow$ this is α ring.

- The Ken spacitione is independent of t (\rightarrow stationary) and $\phi(\rightarrow$ axisymmetric $)$ and hone it has two Killing vector fields: $K^{a}=\left(\partial_{t}\right)^{a}$ and $R^{a}=\left(\partial_{\phi}\right)^{a}$ but it is not static: $t \rightarrow-t$ is not a symmnectiry of $d_{s^{2}}$. If we send $t+-t$ we ado need $\phi \rightarrow-\phi$ so that $d s^{2}$ is bet invecuiant : if we go backwoods in time we also have to revere the sconce of the rotation.
- Note that $K^{a} K_{n}=-\frac{1}{\Sigma}\left(\Delta-a^{2} \sin ^{2} \theta\right)=0$ outside the horizon $(\Delta=0)$. The surface where $K^{2}=0$ is known as the engosuface, and the region between the horizon and the engosurface
is the eagoregion. Inside the egoregion, obscuas mut move in the direction of rotation of the black hole
- The killing veto field that is tangent to the null generators of the horizon is

$$
\chi=\frac{\partial}{\partial t}+\Omega_{H} \frac{\partial}{\partial \phi}, \quad \Omega_{H}=\frac{a}{r_{+}^{2}+a^{2}}
$$

$\Omega_{H} B$ the angulan veloaty of the black lobe.

- Uniquencer thous and astrophysical relevancy of bhs.
- The Ken black hole is believed to be stable uncles small perturbations
- Stationary, asymptotically flat solutions to the EVE are uniquely charactuised by their mass and spin anil are given by the Ken family of solutions
\Rightarrow According to GR, all black holes in the Universe are given by the Kan solution!

