University of London

MTH5114 Linear Programming and Game Theory, Spring 2024 Week 9 Coursework Questions

These exercises should be completed individually and submitted (together with those of weeks 8 and 10) via the course QMPlus page by 9 am on Tuesday, 09 April.

Make sure you clearly write your name and student ID number at the top of your submission:.

1. For the following linear program,

$$
\begin{array}{lc}
\operatorname{maximize} & 7 x_{1}+12 x_{2}+9 x_{3} \\
\text { subject to } \quad x_{1}+3 x_{2}+3 x_{3} \leq 4, \\
2 x_{1}+3 x_{2}+2 x_{3} \leq 5, \\
2 x_{1}+4 x_{2}+3 x_{3} \leq 7, \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

determine whether $\mathbf{x}^{\top}=\left(\frac{3}{2}, \frac{1}{3}, \frac{1}{2}\right)$ is an optimal solution using the principle of complementary slackness.
2. For the following linear program

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+8 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+8 x_{2}+2 x_{3} \leq 4, \\
& 2 x_{1}+4 x_{2}+3 x_{3} \leq 4, \\
x_{1}+2 x_{2}+x_{3} \leq 1, \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

determine whether $\mathbf{x}^{\top}=\left(0, \frac{1}{2}, 0\right)$ is an optimal solution using the principle of complementary slackness.

