

MTH5114 Linear Programming and Game Theory, Spring 2024 Week 9 Coursework Questions Viresh Patel

These exercises should be completed individually and submitted (together with those of weeks 8 and 10) via the course QMPlus page by **9am on Tuesday, 09 April**.

Make sure you clearly write your **name** and **student ID** number at the top of your submission:.

1. For the following linear program,

maximize
$$7x_1 + 12x_2 + 9x_3$$

subject to $x_1 + 3x_2 + 3x_3 \le 4$,
 $2x_1 + 3x_2 + 2x_3 \le 5$,
 $2x_1 + 4x_2 + 3x_3 \le 7$,
 $x_1, x_2, x_3 \ge 0$

determine whether $\mathbf{x}^{\mathsf{T}} = (\frac{3}{2}, \frac{1}{3}, \frac{1}{2})$ is an optimal solution using the principle of complementary slackness.

2. For the following linear program

maximize
$$x_1 + 8x_2 + 3x_3$$

subject to $2x_1 + 8x_2 + 2x_3 \le 4$,
 $2x_1 + 4x_2 + 3x_3 \le 4$,
 $x_1 + 2x_2 + x_3 \le 1$,
 $x_1, x_2, x_3 > 0$

determine whether $\mathbf{x}^{\mathsf{T}} = (0, \frac{1}{2}, 0)$ is an optimal solution using the principle of complementary slackness.