MTH4104 Cheat Sheet

Shu Sasaki

25th March 2024

1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics- given definitions/axioms, derive general statements about integers (that we know too well) via proofs and careful inspection of definitions etc.

Proposition 1. Let a and b be integers and suppose $b>0$. Then $a=b q+r$ for some integers q and $0 \leq r<b$. The pair (q, r) is unique.

Definition. Let a and b be integers. We say that a divides b if there exists an integer c such that $b=a c$.

Remark. The only integer 0 divides is 0 itself.
Definition. Let a and b be integers. A common divisor of a and b is a non-negative integer s such that s divides both a and b. A gcd of a and b is the common divisor r satisfying the property that if s is another (different) common divisor of a and b, then $s<r$.

Proposition 2. s divides r.
We can say something similar for the lcm of a and b.
Proposition 4. If a is a non-negative integer, $\operatorname{gcd}(a, 0)=a$. This is not a definition.
Lemma 5. $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)$. This is not a definition.
Theorem 7 (Bezout's identity). Let a and b be integers. Then there exist integers r and s such that $a r+b s=\operatorname{gcd}(a, b)$.

The proof of Bezout explains only that these integers r and s exist and does not shed any light on how to actually find them. In practice, we make appeal to Euclid's algorithm instead.

Euclid's algorithm is based on the following proposition:

Proposition 6. Let a and b be integers. Suppose $b>0$. By Proposition 1, there exists a uniqe pair of integers q and $0 \leq r<b$ such that $a=b q+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

How do we use Euclid's algorithm to find r and s satisfying $a r+b s=\operatorname{gcd}(a, b)$?
(NON-EXAMINABLE) If your Euclid's algorithm looks like:

$$
\begin{array}{rrl}
\left(s_{n}\right) & r_{n-2} & =r_{n-1} q_{n}+r_{n} \\
\left(s_{n+1}\right) & r_{n-1} & =r_{n} q_{n+1}+r_{n+1} \\
& & \vdots \\
\left(s_{N}\right) & r_{N-1} & =r_{N} q_{N+1}+r_{N+1} \\
\left(s_{N+1}\right) & r_{N} & =r_{N+1} q_{N+2}
\end{array}
$$

then we know that $\operatorname{gcd}(a, b)$ is r_{N+1}, because we may repeat Proposition 6 to deduce that

$$
\begin{gathered}
\operatorname{gcd}(a, b)=\cdots=\operatorname{gcd}\left(r_{n-2}, r_{n-1}\right) \stackrel{\left(s_{n}\right)}{=} \operatorname{gcd}\left(r_{n-1}, r_{n}\right) \stackrel{\left(s_{n+1}\right)}{=} \operatorname{gcd}\left(r_{n}, r_{n+1}\right)=\cdots= \\
\operatorname{gcd}\left(r_{N-1}, r_{N}\right) \stackrel{\left(s_{N}\right)}{=} \operatorname{gcd}\left(r_{N}, r_{N+1}\right) \stackrel{\left(s_{N+1}\right)}{=} r_{N+1} .
\end{gathered}
$$

We also see from $\left(s_{N}\right)$ that $r_{N+1}=-q_{N+1} r_{N}+r_{N-1}$. Indeed, for every n (e.g. $N, N-1, \ldots$), there exist integers X_{n} and Y_{n} satisfying

$$
r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1}
$$

This will find us r and s such that $a r+b s=r_{N+1}$.
We may prove the assertion by induction 'in reverse' (one can reindex all to make this rigorous). We saw $\left(X_{N}, Y_{N}\right)=\left(-q_{N}, 1\right)$ does the job. Supposing that there exist integers X_{n} and Y_{n} such that

$$
r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1},
$$

we aim at proving that there exists X_{n-1} and Y_{n-1} such that

$$
r_{N+1}=X_{n-1} r_{n-1}+Y_{n-1} r_{n-2} .
$$

We will spell out X_{n-1} and Y_{n-1} in terms of X_{n} and Y_{n}. To see this, plug $r_{n}=\left(-q_{n}\right) r_{n-1}+r_{n-2}$ obtained from $\left(s_{n}\right)$ into $r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1}$. We then get

$$
r_{N+1}=X_{n}\left(\left(-q_{n}\right) r_{n-1}+r_{n-2}\right)+Y_{n} r_{n-1}=\left(-q_{n} X_{n}+Y_{n}\right) r_{n-1}+X_{n} r_{n-2},
$$

hence $\left(X_{n-1}, Y_{n-1}\right)=\left(-q_{n} X_{n}+Y_{n}, X_{n}\right)$ does the job. It is possible to use this inductively (as n decreases) to find X 's and Y 's, starting with $\left(X_{N}, Y_{N}\right)=\left(-q_{N}, 1\right)$.

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself. Alternatively, we may define it as a positive integer whose integer divisors are $\{ \pm 1, \pm n\}$.

By Bezout, this is equivalent to the following: if a and b are integers and n divides $a b$, then n divides either a or b. The latter definition allows us to prove:

Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form

$$
(-1)^{r_{\infty}} \prod_{p} p^{r_{p}}
$$

for some non-negative integers r_{∞} and r_{p}, up to reordering of prime factors. The power r_{p} is the maximum number of time p divides the integer. For example, $45=3^{2} \cdot 5$ so $r_{p}=0$ if p is not 3 nor $5, r_{3}=2, r_{5}=1$ and $r_{\infty}=0$.

Let \mathscr{R} be a relation on S. We let $[a]=[a]_{\mathcal{R}}$ denote the subset of all b in S which are related to a, i.e. $a \mathscr{R} b$. If \mathscr{R} is an equivalence relation (satisfying a set of conditions), then

$$
a \mathfrak{R} b \text { if and only if }[a]=[b] .
$$

Theorem 9. Given a set S, there exists a bijective correspondence between

- the equivalence relations \mathscr{R} on S,
- the partitions \mathscr{P} (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then $(\mathscr{R}, S)=(\equiv \mathbb{Z})$, defined such that $a \equiv b$ $\bmod n$ if and only if n divides $b-a($ for integers a and b), is an equivalence relation.

Definition. Let \mathbb{Z}_{n} denote the set of equivalence classes $[a]$ with respect to (\equiv, \mathbb{Z}).
Since $a \equiv b \bmod n$ if and only if $[a]=[b]$, a lot of equivalence classes may be identified. Indeed,
Proposition 11. $\left|\mathbb{Z}_{n}\right|=n$.
Proposition 1 proves Proposition 11. Indeed, if a is an integer (n is, by definition, a positive integer), then there exists q and $0 \leq r<n$ such that $a=n q+r$. Therefore $a \equiv r$, i.e. $[a]=[r]$. The proof also elaborates that $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$. The element $[r]$ is nothing other than the set of integers b with remainder r when divided by $n($ i.e. $b \equiv r \bmod n)$.

On \mathbb{Z}_{n}, we define,,$+- \times$:

$$
\begin{aligned}
{[a]+[b] } & =[a+b] \\
{[a]-[b] } & =[a-b] \\
{[a][b] } & =[a b]
\end{aligned}
$$

but no division. These do not depend on choice of representatives, i.e. if $a \equiv a^{\prime} \bmod n$, then $[a]+[b]=\left[a^{\prime}\right]+[b]$ etc.

No division is defined but:
Definition. We say that $[a]$ of \mathbb{Z}_{n} has multiplicative inverse if there exists an integer b such that $[a][b]=[1]$ (or equivalently $a b \equiv 1 \bmod n)$. This plays the role of $1 /[a]$ but not literally $(1 /[a]$ or $[1 / a]$ simply does not make sense!!). The multiplicative inverse is often written as $[a]^{-1}$.

Remark. The multiplicative inverse, if exists, is unique. Suppose that $[b]$ and $[c]$ are elements of \mathbb{Z}_{n} such that $[a][b]=[1]$ and $[a][c]=[1]$. Multiplying both sides of $[c][a]=[1]$ by $[b]$, we obtain $[c][a][b]=[1][b]$, i.e. $[c]=[b]$.

Theorem 12. An element $[a]$ of \mathbb{Z}_{n} has multiplicative inverse if and only if $\operatorname{gcd}(a, n)=1$.
The proof explains how to find the multiplicative inverse explicitly. If a is an integer such that $\operatorname{gcd}(a, n)=1$ (which one can check in practice by Euclid's algorithm), Euclid's algorithm finds integers b and c such that $a b+n c=\operatorname{gcd}(a, n)=1$. It then follows that $a b \equiv 1 \bmod n$, i.e. $[a][b]=[a b]=[1]$.

Proposition 13. An element $[a]$ of \mathbb{Z}_{n} has no multiplicative inverse if and only if there exists b, not congruent to $0 \bmod n$, such that $[a][b]=[0]$.

Example. $[2]_{6}[3]_{6}=[0]_{6}$.
It is possible to compute the number of elements in \mathbb{Z}_{n} with multiplicative inverses, using the fundamental theorem of arithmetic: if $=\prod_{p} p^{r_{p}}$, then it is computed by $\prod_{p}(p-1) p^{r_{p}-1}$.

What is it useful for? It is possible to solve 'linear congruence equations': $a x+b \equiv c \bmod n$ (when $\operatorname{gcd}(a, n)=1$). Indeed, $[x]=[c-b][a]^{-1}$ where $[a]^{-1}$ is the multiplicative inverse of $[a]$ (this is NOT $1 /[a]$). What if $\operatorname{gcd}(a, n)>1$? Take Number Theory next year!

2 Chapter 4

Goal. Understand axioms of groups, ring and fields, together with their elementary properties. Wrap your head around the idea that + and \times are just operations that satisfy axioms.

Definition. A group is a set G with an operation $*$ on G satisfying the following axioms:
(G0) If a, b are elements of G, then $a * b$ is an element of G.
(G1) If a, b, c are elements of G, then $a *(b * c)=(a * b) * c$.
(G2) There is an element e in G (called the identity element) such that $a * e=e * a=a$ for every element of G.
(G3) For every element a of G, there exists b in G such that $a * b=b * a=e$. The element b is called the inverse of a.
(G4) If a, b are elements of G, then $a * b=b * a$.
When these five conditions hold, we say $(G, *)$ (or simply G if the operation $*$ is clear from the context) is a commutative/abelian group. By groups, I shall mean abelian groups unless otherwise specified.

Example. Let S be a non-empty set. Let $\operatorname{Sym}(S)$ be the set of *bijective* functions $a: S \rightarrow S$ and $*$ be the composition 0 - if a and b are elements of G, then $a \circ b$ is the composite $S \xrightarrow{b} S \xrightarrow{a} S$ sending s to $a(b(s))$. Then $(\operatorname{Sym}(S), \circ)$ is a group.

Proposition 14. Let $(G, *)$ be a group.

- The identity element of G is unique.
- Each element a of G has a unique inverse (written multiplicatively as a^{-1}).
- If $a * b=a * c$, then $b=c$. Similarly, if $b * a=c * a$, then $b=c$.
- For any a, b in G, then $(a * b)^{-1}=b^{-1} * a^{-1}$.

Definition. A ring is a set R which comes equipped with two operations, + (addition) and \times (multiplication), satisfying the following axioms:
$(\mathrm{R}+0)$ If a, b are elements of R, then $a+b$ is an element of R.
$(\mathrm{R}+1)$ If a, b, c are elements of R, then $a+(b+c)=(a+b)+c$.
$(\mathrm{R}+2)$ There is an element 0 in R such that $a+0=0+a=a$ for every element of R - the element is sometimes referred to as the additive identity element, or the identity element with respect to + /addition.
$(\mathrm{R}+3)$ For every element a of R, there exists b in G such that $a+b=b+a=0$.
$(\mathrm{R}+4)$ If a, b are elements of R, then $a+b=b+a$.
($\mathrm{R} \times 0$) If a, b are elements of R, then $a \times b$ is an element of R.
($\mathrm{R} \times 1$) If a, b, c are elements of R, then $a \times(b \times c)=(a \times b) \times c$.
$(\mathrm{R} \times+)$ If a, b, c are elements of R, then

$$
a \times(b+c)=a \times b+a \times c .
$$

$(\mathrm{R}+\times)$ If a, b, c are elements of R, then

$$
(b+c) \times a=b \times a+c \times a .
$$

Remark. The first five axioms say that $(G, *)=(R,+)$ is an additive (abelian) group.
Remark. As seen in groups, the operations + and \times are just symbols/names given to operations that satisfy a bunch of conditions that pin down + and \times on \mathbb{Z} (it is precisely for this reason that the symbols ' + ' and ' x ' are used conventionally). See examples below.

Remark. We often write $a b$ instead of $a \times b$.

Definition. A ring R is said to be a commutative ring if $a \times b=b \times a$ holds for all a, b in R.

Example. The set of 2 -by- 2 matrices with entries in the real numbers \mathbb{R} is a non-commutative ring. For example, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ but $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. The noncommutativity holds more generally (see Proposition 35).

Proposition 15. Let $(R,+, \times)$ be a ring.

- There is a unique zero element,
- Any element has a unique additive inverse.
- If $a+b=a+c$, then $b=c$.

Proposition 16. Let R be a ring. For every element a of R, we have $0 a=a 0=0$.
Definition. Let R be a ring. If R has an element 1 (the multiplicative identity element) such that, for every a in R, we have $a \times 1=1 \times a=a$, then we say R is a ring with identity (commonly understood as *multiplicative* identity). The additive identity 0 and the multiplicative identity (if exists) do not have to be distinct.

Theorem 17. The set \mathbb{Z}_{n}, with addition and multiplication modulo n as defined before, is a commutative ring with identity [1].

Examples (of rings without identity).

- The set of even integers is a ring (with respect to usual + and \times) without identity- the set of odd integers is not even a ring!
- Let R be the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\int_{0}^{\infty} f<\infty$. This is a ring. However, the identity function 1 is not an element of R as $\int_{0}^{\infty} 1=\infty$.
- A group $(G, *)$ with trivial multiplication is not a ring with identity, unless $G=\{e\}$.

Definition. Let R be a ring with identity element 1 . An element a in R is called a unit if there is an element b in R such that $a b=b a=1$. The element b is called the inverse of b, and is written as a^{-1}.

Remark. If R is a ring with identity, an element a is a unit if and only if a has multiplicative inverse. To put it another way,

$$
\{\text { units in } R\}=\{\text { elements in } R \text { with multiplicative inverses }\} .
$$

Definition. We will denote by R^{\times}the units of R.
Proposition 18. The units of \mathbb{Z}_{n} are the subset of equivalence classes $[a]$ in \mathbb{Z} represented by integers a such that $\operatorname{gcd}(a, n)=1$. Furthermore, $\left|\mathbb{Z}_{n}\right|=\phi(n)$.

The following proposition puts together some of the key properties of the multiplicative identity 1.

Proposition 19. Let R be a ring with (multiplicative) identity 1.

- The identity element 1 is unique.
- If 1 is distinct from the additive identity 0 , then 0 is NOT a unit.
- 1 is a unit and its inverse is 1 itself.

Proposition 20. Let R be a ring with (multiplicative) identity 1 .

- If a is a unit, the inverse of a is unique.
- If a is a unit, then so is a^{-1} - the inverse of a^{-1} is indeed a.
- If a and b are units, then so is $a b$; and its inverse is $b^{-1} a^{-1}$.

The frequency with which the proof of Proposition 14 was useful in proving statements in the propositions is suggestive of:

Theorem 21. If $(R,+, \times)$ is a ring with identity, $\left(R^{\times}, \times\right)$is a group. If, furthermore, $(R,+, \times)$ is commutative, $\left(R^{\times}, \times\right)$is abelian.

Example. Let $(\mathbb{Z},+, \times)$ be the ring of integers with usual addition + and multiplication \times. Define new addition \boxplus :

$$
a \boxplus b=a+b+1
$$

and new multiplication

$$
a \boxtimes b=a+b+a b
$$

in terms of old + and \times. Then this is a commutative ring with identity, where the zero identity (the identity element with respect to addition, as prescribed by $(\mathrm{R}+2)$) is -1 and the multiplicative identity is 0 !

Checking why this is true involves a lot of work:

- (R+0) Since $a+b+1 \in \mathbb{Z}$, we have $a \boxplus b=a+b+1 \in \mathbb{Z}$.
- (R+1) On one hand,

$$
a \boxplus(b \boxplus c)=a \boxplus(b+c+1)=a+(b+c+1)+1=a+b+c+1
$$

On the other hand,

$$
(a \boxplus b) \boxplus c=(a+b+1) \boxplus c=(a+b+1)+c+1=a+b+c+1
$$

Therefore

$$
a \boxplus(b \boxplus c)=(a \boxplus b) \boxplus c .
$$

- $(\mathrm{R}+2)(-1)$ is the identity element with respect to \boxtimes. Indeed,

$$
a \boxplus(-1)=a+(-1)+1=a
$$

and

$$
(-1) \boxplus a=(-1)+a+1=a .
$$

[To find the identity, we need to find b in \mathbb{Z} such that $a \boxplus b=a$ holds for any a. By definition, this is equivalent to finding b satisfying $a+b+1=a$, i.e. $b+1=0$. Therefore $b=-1$.]

- $(\mathrm{R}+3)$ The inverse of a with respect to \boxplus is $-a-2$. Indeed,

$$
a \boxplus(-a-2)=a+(-a-2)+1=-1
$$

and

$$
(-a-2) \boxplus a=(-a-2)+a+1=-1 .
$$

[To find the inverse of a, we need to find b such that $a \boxplus b=-1$ (since -1 is the identity with respect to \boxplus !) for example. This is equivalent to $a+b+1=-1$, i.e., $b=-a-2$.]

- (R+4)

$$
a \boxplus b=a+b+1=b+a+1=b \boxplus a .
$$

$\bullet(\mathrm{R} \times 0)$ Since $a+b+a b \in \mathbb{Z}$, we have $a \boxtimes b=a+b+a b \in \mathbb{Z}$.

- $(\mathrm{R} \times 1)$ On one hand,

$$
a \boxtimes(b \boxtimes c)=a \boxtimes(b+c+b c)=a+(b+c+b c)+a(b+c+b c) .
$$

On the other hand,

$$
(a \boxtimes b) \boxtimes c=(a+b+a b) \boxtimes c=(a+b+a b)+c+(a+b+a b) c .
$$

It follows from $(\mathrm{R}+4),(\mathrm{R} \times 1),(\mathrm{R} \times+)$ and $(\mathrm{R}+\times)$ for $(\mathbb{Z},+, \times)$ that

$$
a \boxtimes(b \boxtimes c)=(a \boxtimes b) \boxtimes c .
$$

- ($\mathrm{R} \times+$) On one hand,

$$
a \boxtimes(b \boxplus c)=a \boxtimes(b+c+1)=a+(b+c+1)+a(b+c+1) .
$$

On the other hand,

$$
(a \boxtimes b) \boxplus(a \boxtimes c)=(a+b+a b) \boxplus(a+c+a c)=(a+b+a b)+(a+c+a c)+1 .
$$

It then follows from $(\mathrm{R}+4),(\mathrm{R} \times+)$ and $(\mathrm{R}+\times)$ for $(\mathbb{Z},+, \times)$ that

$$
a \boxtimes(b \boxplus c)=(a \boxtimes b) \boxplus(a \boxtimes c) .
$$

- $(\mathrm{R}+\times)$ On one hand,

$$
(b \boxplus c) \boxtimes a=(b+c+1) \boxtimes a=(b+c+1)+a+(b+c+1) a .
$$

On the other hand,

$$
(b \boxtimes a) \boxplus(c \boxtimes a)=(b+a+b a) \boxplus(c+a+c a)=(b+a+b a)+(c+a+c a)+1 .
$$

It then follows from $(\mathrm{R}+4),(\mathrm{R} \times+)$ and $(\mathrm{R}+\times)$ for $(\mathbb{Z},+, \times)$ that

$$
(b \boxplus c) \boxtimes a=(b \boxtimes a) \boxplus(c \boxtimes a) .
$$

$\bullet(\mathbb{Z}, \boxplus, \boxtimes)$ is commutative. Since $(\mathbb{Z},+, \times)$ is a commutative ring,

$$
a \boxtimes b=a+b+a b=b+a+b a=b \boxtimes a .
$$

- The multiplicative identity with respect to \boxtimes is 0 . Indeed,

$$
a \boxtimes 0=a+0+a 0=a
$$

and

$$
0 \boxtimes a=0+a+0 a=a .
$$

[To find this, we need to find b in \mathbb{Z} such that $a \boxtimes b=a$ holds for every a. This is equivalent to finding b satisfying $a+b+a b=a$, i.e. $b(1+a)=0$, holds for every a. Therefore $b=0$.]

The units of $(\mathbb{Z}, \boxplus, \boxtimes)$ are $\{0,-2\}$. To see this, we need to find integers a (and $b)$ such that $a \boxtimes b=0$, i.e. $a+b+a b=0$. This is equivalent to $(a+1)(b+1)=-1$. Therefore, $(a+1, b+1)$ is either $(1,-1)$ or $(-1,1)$. In other words, (a, b) is either $(0,-2)$ or $(-2,0)$.

Definition. A field is a *commutative* ring $(F,+, \times)$ satisfying the axioms

- $(F,+)$ is an (abelian) additive group (with identity element 0)
- $(F-\{0\}, \times)$ is a multiplicative group (with identity element 1). Since $(F,+, \times)$ is assumed to be commutative, $(F-\{0\}, \times)$ is necessarily an abelian multiplicative group.
- The additive identity ' 0 ' (the identity element in the group $(F,+)$) is distinct from the multiplicative identity ' 1 ' (the identity element in the group ($F-\{0\}, \times$).

Remark. If $1=0$, then $a=1 \times a=0 \times a=0$ (the last equality needs to be justified; see Proposition?). So the condition $1 \neq 0$ denies any set with one element $\{1=0\}$ any chance of being a field.

Remark. By definition,

$$
\text { Field } \Rightarrow \text { Ring } \Rightarrow \text { Group }
$$

Remark. Groups encapsulate 'symmetry'. Why rings (and not fields)? In general, elements of a ring do not have (multiplicative) inverses and this is not a bad things and this actually makes rings interesting. For example, the division algorithm would be vacuous if everything in \mathbb{Z} had an inverse (i.e. is divisible).

Theorem 22. If p is a prime number, then $\mathbb{F}_{p}=\mathbb{Z}_{p}$ is a field.
Definition. The set \mathbb{C} of complex numbers is the set of elements of the form $a+b \sqrt{-1}$ where a, b are real numbers.

We define addition and multiplication on \mathbb{C} by

$$
\begin{gathered}
(a+b \sqrt{-1})+(c+d \sqrt{-1})=(a+c)+(b+d) \sqrt{-1} \\
(a+b \sqrt{-1}) \times(c+d \sqrt{-1})=(a c-b d)+(a d+b c) \sqrt{-1}
\end{gathered}
$$

Theorem 23. The set \mathbb{C} is a field.
We have special names for rings which satisfy some, but not all, of the axioms a field needs to satisfy.

Definition. We say that a ring R with identity is called a division ring $/$ skew field if it satisfies all the axioms except the commutativity of multiplication $(a \times b=b \times a$ for all a, b in R)- a field assumes the set of non-zero elements is an abelian group with respect to \times.

The name 'division ring' is justified by the following assertion:
Proposition 24. Let R be a division ring and a is non-zero element of R. If $a b=a c$, then $b=c$.
Example. Let \mathbb{H} be the set of elements of the form

$$
c 1+c(p) p+c(q) q+c(r) r
$$

where

- $c, c(p), c(q), c(r)$ range over \mathbb{R}
- $1, p, q, r$ are symbols subject to the 'multiplicative relations'
- $1 p=p 1=p, 1 q=q 1=q, 1 r=r 1=r$
- $p^{2}=-1, q^{2}=-1, r^{2}=-1$
- $p q r=-1$

In terms of natural addition and multiplication (prescribed by the relations), \mathbb{H} defines a division ring. This is often referred to as Hamilton's quaternions.

The table of (row)(column) is as follows:

	1	p	q	r
1	1	p	q	r
p	p	-1	r	$-q$
q	q	$-r$	-1	p
r	r	q	$-p$	-1

By assumption, $p q=-q p, q r=-r q, r p=-p r$ and therefore the ring is evidently noncommutative. The multiplicative inverse is 1 (the element of \mathbb{H} given by $(c, c(p), c(q), c(r))=$ $(1,0,0,0)$).

Every non-zero element of \mathbb{H} has multiplicative inverse. To see this let a be a non-zero element of \mathbb{H} of the form $c+c(p) p+c(q) q+c(r) r$. By the assumption, the non-negative real numver

$$
\mathcal{R}=c^{2}+c(p)^{2}+c(q)^{2}+c(r)^{2}
$$

is indeed positive. Then the inverse of a is

$$
\frac{b}{\mathfrak{R}}
$$

where $b=c-c(p) p-c(q) q-c(r) r$, i.e.,

$$
\frac{1}{\mathfrak{R}}(c-c(p) p-c(q) q-c(r) r)=\frac{1}{\mathscr{R}} c-\frac{1}{\mathscr{R}} c(p) p-\frac{1}{\mathscr{R}} c(q) q-\frac{1}{\mathscr{R}} c(r) r \in \mathbb{H} .
$$

The element b plays the same role as the complex conjugation in \mathbb{C} !
The set \mathbb{Z}_{n} of equivalence classes with respect to 'congruence $\bmod n$ ' is a rich source of nontrivial examples of groups, rings and fields:

- $\left(\mathbb{Z}_{n},+\right)$ is a group.
- $\left(\mathbb{Z}_{n},+, \times\right)$ is a commutative ring with identity. There are $\phi(n)$ units in \mathbb{Z}_{n}. If n is not a prime number, this is neither a field nor a division ring.
- If n is a prime number p, then $\mathbb{Z}_{p}=\mathbb{F}_{p}$ is a field.

3 Polynomials

Definition. Let R be a ring. A polynomial f in one variable X with coefficients in R is:

$$
f=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c
$$

where $c_{n}, c_{n-1}, \ldots, c_{1}, c$ are elements of R which are often referred to as the coefficients of f.
The set of all polynomials in one variable X with coefficients in R will be denoted by $R[X]$.
Definition. The degree, denoted $\operatorname{deg}(f)$, of a non-zero polynomial f (in one variable X) is the largest integer n for which its coefficient ' c_{n} ' of X^{n} is non-zero. The degree is not defined for the zero polynomial.

Definition. A non-zero polynomial $f=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c$ of degree n is called monic if the leading coefficient $c_{n}=1$. The zero polynomial is defined to be monic.

Theorem 25. If R is a ring, then so is $R[X]$ in terms of addition

$$
(f+g)(X)=f(X)+g(X)=\sum_{n}\left(c_{n}(f)+c_{n}(g)\right) X^{n}
$$

and multiplication

$$
(f g)(X)=f(X) g(X)=\sum_{n}\left(\sum_{r} c_{r}(f) c_{n-r}(g)\right) X^{n}
$$

If R is a ring with identity, then so is $R[X]$. If R is commutative, then so is $R[X]$.
Proposition 26. If $(R,+, \times)$ is a ring with identity 1 , then $R[X]$ is not a division ring.
Proposition 27. Let $(F,+, \times)$ be a field. The units $F[X]^{\times}$of $F[X]$ are $F^{\times}=F-\{0\}$.
Theorem 28 (Division algorithm in the context of the polynomial ring $F[X]$). Let F be a field. Let f and g be two polynomials in $F[X]$ and assume, in particular, that g is non-zero. Then there exists polynomials q and r in $F[X]$ such that

$$
f=g q+r
$$

where either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Definition. Let f and g be polynomials in $F[X]$. We say that g divides f, or g is a factor of f, if there exists a polynomial q in $F[X]$ such that $f=g q$.

Remark. One needs to be careful when it come to polynomial division. Suppose g divides f. Then, for every unit γ in $F[X]$, the product $g \gamma$ also divides f ! By Proposition 27, we know that $F[X]^{\times}=F-\{0\}$, hence this assertions amounts to saying that if g divides f, then any non-zero constant multiple of g also divides f.

The divisibility of a polynomial depends on F :

Examples.

$X+\sqrt{-1}$ divides $X^{2}+1$ in $\mathbb{C}[X]$. Indeed, $(X+\sqrt{-1})(X-\sqrt{-1})=X^{2}-(\sqrt{-1})^{2}=X^{2}+1$. On the other hand, no non-trivial polynomial in $\mathbb{Q}[X]$ divides $f(X)=X^{2}+1$ in $\mathbb{Q}[X]$!

Corollary 29. Let F be a field. Let f in $F[X]$ and α be an element of F. Then there exists q in $F[X]$ and r in F such that

$$
f=(X-\alpha) q+r .
$$

Corollary 30. Let f in $F[X]$ and α in F. The remainder of f when divided by $(X-\alpha)$ is $f(\alpha)$. In particular, $f(\alpha)=0$ if and only if $X-\alpha$ is a factor of $f(X)$ in $F[X]$.

We may use the corollary to check if a given polynomial factorises or not factorises at all.
Theorem 31.(The Fundamental Theorem of Algebra) Let $n \geq 1$. Let c, c_{1}, \ldots, c_{n} be complex numbers, where c_{n} is assumed to be non-zero. Then the polynomial $c_{n} X^{n}+\cdots+c$ has at least one root inside \mathbb{C}.

Theorem 32.(The Fundamental Theorem of Algebra with multiplicities) Let $n \geq 1$. Let c, c_{1}, \ldots, c_{n} be complex numbers, where c_{n} is assumed to be non-zero. Then the polynomial $f(X)=c_{n} X^{n}+$ $\cdots+c$ has exactly n roots in \mathbb{C} counted with multiplicities, i.e. there exist complex numbers $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
f(X)=c_{n}\left(X-\alpha_{n}\right)\left(X-\alpha_{n-1}\right) \cdots\left(X-\alpha_{1}\right) .
$$

Theorem 33.

- Any two polynomials f and g have a greatest common divisor in $F[X]$.
- The gcd of two polynomials in $F[X]$ can be found by Euclid's algorithm.
- If $\operatorname{gcd}(f, g)=\gamma($ a polynomial in $F[X])$, then there exist p, q in $F[X]$ such that

$$
f p+g q=\gamma
$$

these polynomials p and q can also be found from the extended Euclid's algorithm.

4 Matrices

Let $(R,+, \times)$ be a ring and let $\mathrm{M}_{2}(R)$ be the set of 'matrices'

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are elements of R, together with addition

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right)
$$

and multiplication

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d b^{\prime}
\end{array}\right) .
$$

Theorem 34. $\mathrm{M}_{2}(R)$ is a ring. If R is a ring with identity, then so is $\mathrm{M}_{2}(R)$.
Remark. The additive identity, the identity element with respect to + defined above, is $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, where each entry 0 is the additive identity in R as defined in ($\mathrm{R}+2$). If R is a ring with identity 1 , then $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity.

Remark. In contrast to Theorem $25, \mathrm{M}_{2}(R)$ is never commutative, even if R is commutative.
Proposition 35. If $(R,+, \times)$ is a ring with identity but is not a ring with the property that for every elements a, b in R, the product is always $a b=0$, then $\mathrm{M}_{2}(R)$ is neither commutative nor a division ring.

Remarks. An example of those rings excluded is the ring $(G, *, \times)$ given by a group $(G, *)$ with multiplication $a \times b=e$ for all a, b in G. A field is an example of those rings considered in the proposition.

