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1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics— given definitions/axioms, derive gen-
eral statements about integers (that we know too well) via proofs and careful inspection of defini-
tions etc.

Proposition 1. Let @ and b be integers and suppose b > 0. Then a = bg + r for some integers ¢
and 0 < 7 < b. The pair (¢,7) is unique.

Definition. Let @ and b be integers. We say that a divides b if there exists an integer ¢ such that
b = ac.

Remark. The only integer 0 divides is 0 icself.

Definition. Let @ and b be integers. A common divisor of @ and b is a non-negative integer s
such that s divides both @ and b. A ged of @ and b is the common divisor 7 satisfying the property
that if s is another (different) common divisor of @ and b, thens < r.

Proposition 2. s divides .

We can say something similar for the lem of @ and .

Proposition 4. If @ is a non-negative integer, gcd(a, 0) = a. This is not a definition.

Lemma 5. ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b). This is not a definition.

Theorem 7 (Bezout’s identity). Let @ and b be integers. Then there exist integers r and s such

that ar + bs = ged(a, b).

The proof of Bezout explains only that these integers 7 and s exist and does not shed any light
on how to actually find them. In practice, we make appeal to Euclid’s algorithm instead.

Euclid’s algorithm is based on the following proposition:



Proposition 6. Let @ and b be integers. Suppose b > 0. By Proposition 1, there exists a uniqe
pair of integers ¢ and 0 < r < b such that a = bg + r. Then ged(a, b) = ged(b, r).

How do we use Euclid’s algorithm to find 7 and s satistying ar + bs = ged(a, b)?

(NON-EXAMINABLE) If your Euclid’s algorithm looks like:

(Sn) Tho = Ty 1qu + 71y
(Sn—i-l) Tn—1 = TpGnt+1 + Tnt1

(S8) TN—1 = TNGN41 F TN
(Sn41) 'N = TN4+1dN42

then we know that ged(a, b) is 7y41, because we may repeat Proposition 6 to deduce that

()

(Sn41)

ng(d,b) == ng(r’n—%rn—l) = ng(rn—lyrn) = ng(rn;Tn—l—l) — =
ng(TN_l, T'N) (g) ng(TN7 TN—&—I) (SN:JFI) T'N+1.
We also see from (sy) that 7x41 = —gn117n +7n—1. Indeed, for everyn (e.g. N, N —1,...),

there exist integers X, and Y, satistying
'N+1 = ann + ann—l-

This will find us 7 and s such that ar + bs = ry,1.

We may prove the assertion by induction ‘in reverse’ (one can reindex all to make this rigorous).
We saw (X, Yn) = (—¢n, 1) does the job. Supposing that there exist integers X, and Y, such
that

N1 = Xy + Yo,

we aim at proving that there exists X,_; and ¥, such that
N+1 = }(nflrnfl + Ynflran-

We will spell out X,—1 and ¥,_1 in terms of X, and ¥,,. To see this, plug r, = (—@u)ru—1 + 7n—2
obtained from (s,) into ry41 = X7, + Y7r,—1. We then get

rN+1 = Xz((_Qn)rn—l + rn—?) + ann—l - (_Qan + Yn)rn—l + )Cnrn—Qa

hence (X,—1, Y,—1) = (—¢. X, + Yo, X,,) does the job. It is possible to use this inductively (as n
decreases) to find X’s and Y’s, starting with (Xy, Yy) = (—¢n, 1).

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself.
Alternatively, we may define it as a positive integer whose integer divisors are {£1, £n}.

By Bezout, this is equivalent to the following: if @ and b are integers and n divides ab, then n
divides either @ or b. The latter definition allows us to prove:



Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form
(—1=]]r"
P

for some non-negative integers 7o and 7, up to reordering of prime factors. The power 7 is the
maximum number of time p divides the integer. For example, 45 = 3% - 5507, = 0 if p is not 3
nor 5,73 =2,r5 = land roo = 0.

Let R be a relation on S. We let [a] = [a]g denote the subset of all b in S which are related to
a,ic. aRb. If R is an equivalence relation (satistying a set of conditions), then

aRb it and only if [a] = [b].
Theorem 9. Given a set S, there exists a bijective correspondence between
o the equivalence relations R on §,
o the partitions & (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then (R, S) = (= Z), defined such thata = b
mod 7 if and only if n divides b — a (for integers @ and b), is an equivalence relation.

Defmition. Let Z, denote the set of equivalence classes [a] with respect to (=, Z).

Since a = bmod n if and only if [a] = [b], a lot of equivalence classes may be identified. Indeed,

Proposition 11. |Z,| = n.

Proposition 1 proves Proposition 11. Indeed, if @ is an integer (n is, by definition, a positive
integer), then there exists ¢ and 0 < 7 < n such that @ = ng + r. Therefore @ = r, i.e. [a] = [r].
The proof also elaborates that Z,, = {[0],[1], ..., [n — 1]}. The element [r] is nothing other than

the set of integers b with remainder 7 when divided by n (i.e. b = r mod n).

On Z,, we define +, —, X:

[a] +[0] = [a+0]
@] = [0] = [a—1]
[al[p] = [ad]
but no division. These do not depend on choice of representatives, ie. if @ = @’ mod n, then

(] + 8] = [@] + [b] ece.
No division is defined but:
Definition. We say that [a] of Z,, has mu]tip]icative inverse if there exists an integer b such that

[a][b] = [1] (or equivalently @b = 1 mod n). This plays the role of 1/[a] but not literally (1/[a] or

[1/a] simply does not make sense!). The multiplicative inverse is often written as [a] .



Remark. The multiplicative inverse, if exists, is unique. Suppose that [6] and [¢] are elements
of Z, such that [a][b] = [1] and [a][c] = [1]. Multiplying both sides of [¢][a] = [1] by [6], we obtain
[e]lal[6] = [1]0], i.c. [e] = [b].

Theorem 12. An element [a] of Z,, has multiplicative inverse if and only if ged(a, n) = 1.

The proof explains how to find the multiplicative inverse explicitly. If @ is an integer such that
ged(a,n) = 1 (which one can check in practice by Euclid’s algorithm), Euclid’s algorithm finds
integers b and ¢ such that ab + nc = ged(a,n) = 1. Tt then follows that @b = 1 mod n, i.e.

[a]b] = [ab] = [1].

Proposition 13. An element [a] of Z,, has no multiplicative inverse if and only if there exists b,
not congruent to 0 mod n, such that [a][b] = [0].

Example. [2]4[3]6 = [0]6.

It is possible to compute the number of elements in Z,, with multiplicative inverses, using the

fundamental theorem of arithmetic: if = Hprf’, then it is computed by [, (p — 1)pr~t.
P

What is it useful for? It is possible to solve ‘linear congruence equations”: ax + b = ¢ mod n
(when ged(a,n) = 1). Indeed, [x] = [¢ — b][a] ™ where [a] ™! is the multiplicative inverse of [a]
(this is NOT 1/[a]). What if ged(a,n) > 1? Take Number Theory next year!

2 Chapter 4
Goal. Understand axioms of groups, ring and fields, together with their elementary properties.
Wrap your head around the idea that 4+ and x are just operations that satisfy axioms.
Definition. A group is a set G with an operation * on G satisfying the following axioms:
(GO) Ifa,b are elements of G, then @ * b is an element of G.
(G1) Ifa,b,care elements of G, thena x (bxc) = (axb) xc.

(G2) There is an element e in G (called the identity element) such thata ¥ e = e xa = a for every
element of G.

(G3) For every element @ of G, there exists b in G such thata * b = b x a = e. The clement b is
called the inverse of a.

(G4) Ifa,b are elements of G, thenaxb = b *a.

When these five conditions hold, we say (G, %) (or simply G if the operation * is clear from the
context) is a commutative/abelian group. By groups, I shall mean abelian groups unless otherwise

specified.



Example. Let S be a non-empty set. Let Sym(S) be the set of *bijective® functionsa : S — S
P pey Y ]

.. .C - . . b a
and * be the composition o—if @ and b are elements of G, then a 0 b is the composite S = § — S

sending s to a(b(s)). Then (Sym(S), o) is a group.
Proposition 14. Let (G, %) be a group.
e 'The identity element of G is unique.
e Each element a of G has a unique inverse (written multiplicatively as ab.
o lfaxb=axc thenb =c Similarly, ifbxa =cx*a, thenb =c.
e Foranya,bin G, then (axb)™ =b"' xa™".

Definition. A ring is a set R which comes equipped with two operations, + (addition) and X
(multiplication), satisfying the following axioms:

(R+0) Ifa,b are elements of R, then a@ + b is an element of R.
(R+1) Ifa, b, c are elements of R, thena + (b+¢) = (a + b) +c.

(R4+2) Thereisan element 0 in R such thata+0 = 0+a = a for every element of R~ the element is
sometimes referred to as the additive identity element, or the identity element with respect

to +/addition.
(R+43) For every element @ of R, there exists b in G such thata+b=5b+a =0.
(R+4) If'a,b are elements of R, thena + b = b + a.
(Rx0) Ifa,b are elements of R, then @ X b is an element of R.
(Rx1) Ifa,b,care elements of R, thena X (b x ¢) = (a x b) x c.
(Rx+) Ifa,b,c are elements of R, then

ax(b+c¢)=axb+axec.

(R+x) Ifa,b,c are elements of R, then

(b+c¢)xa=bxa+cxa.
Remark. The first five axioms say that (G, *) = (R, +) is an additive (abelian) group.
Remark. Asseen in groups, the operations + and X are just symbols/names given to operations
that satisfy a bunch of conditions that pin down + and X on Z (it is precisely for this reason that
the symbols ‘4" and ‘X are used conventionally). See examples below.

Remark. We often write ab instead of @ X b.

Definition. A ring R is said to be a commutative ring if @ X b = b x a holds for all @, b in R.



Example. The set of 2-by-2 matrices with entries in the real numbers R is a non-commurative

. 10 01 0 1 0 1 1 0 0 0\ .
ring. For example, 0 0ollo o) =100 but 0 0)lo o) =\o o) The non-

commutativity holds more generally (see Proposition 35).

Proposition 15. Let (R, +, x) be a ring.

e There is a unique zero element,

e Any element has a unique additive inverse.

o lfa+b=a+c thenb=c.

Proposition 16. Let R be a ring. For every element @ of R, we have Oz = a0 = 0.

Definition. Let R be a ring. If R has an element 1 (the multiplicative identity element) such
that, for everya in R, we havea X 1 = 1 X a = a, then we say R is a ring with identity (commonly

understood as *multiplicative* identity). The additive identity 0 and the multiplicative identity
(if exists) do not have to be distinct.

Theorem 17. The set Z,, with addition and multiplication modulo n as defined before, is a
commutative ring with identity [1].

Examples (of rings without identity).
o The set of even integers is a ring (with respect to usual + and x) without identity— the set of
odd integers is not even a ring!

[e.9]
e Let R be the set of continuous functions f : R — R such that / f < oo. This is a ring.
0

o0
However, the identity function 1 is not an element of R as / 1 =o00.
0
o A group (G, *) with trivial multiplication is not a ring with identity, unless G = {e}.

Definition. Let R be a ring with identity element 1. An element @ in R is called a unit if there

is an element b in R such that ab = ba = 1. The element b is called the inverse of b, and is written

asa L.

Remark. If R is a ring with identity, an element a is a unit if and only if @ has multiplicative
inverse. To put it another way,

{units in R} = {elements in R with multiplicative inverses}.

Definition. We will denote by R* the units of R.

Proposition 18. The units of Z, are the subset of equivalence classes [a] in Z represented by
integers @ such that ged(a,n) = 1. Furthermore, |Z,| = ¢(n).

The following proposition puts together some of the key properties of the multiplicative iden-
tity 1.



Proposition 19. Let R be a ring with (multiplicative) identity 1.

e The identity element 1 is unique.

e If 1 is distinct from the additive identity 0, then 0 is NOT a unit.
e 1isaunit and its inverse is 1 itself.

Proposition 20. Let R be a ring with (multiplicative) identity 1.

e Ifaisaunit, the inverse of @ is unique.

o Ifaisaunit, then sois @ '= the inverse of ¢! is indeed a.

o [fa and b are units, then so is ab; and its inverse is b~ ta L.

The frequency with which the proof of Proposition 14 was useful in proving stacements in the
propositions is suggestive of:

Theorem 21. If (R, +, X ) isaring with identity, (R*, X) is a group. If, furthermore, (R, +, X)

is commutative, (R, X) is abelian.

Example. Let (Z, 4+, x) be the ring of integers with usual addition 4+ and multiplication x.
Define new addition H:

aBb=a+b+1

and new multiplication

aXb=a+b+ab

in terms of old + and X. Then this is a commutative ring with identity, where the zero identity (the
identity element with respect to addition, as prescribed by (R+2)) is —1 and the multiplicative
identity is 0!

Checking why this is true involves a lot of work:
o (R+0) Sincea+b+1€Z,wehaveaBb=a+b+1 € Z.

e (R+1) On one hand,
aB(OB)=aBb+c+1l)=a+(b+c+1)+1=a+b+c+ 1
On the other hand,
(@aBb)Bc=(e+b+1)Bc=(a+b+1)+c+1=a+b+c+ 1

Therefore
aB(bHBc)=(«EBHb)He.

o (R+2) (—1) is the identity element with respect to K. Indeed,
aB(-1)=a+(-1)+1=a

7



and

(-)HBa=(-1)+a+1=a.

[To find the identity, we need to find b in Z such that a Bb = a holds for any a. By definition,
this is equivalent to finding b satistyinga + b +1 = a,i.c. b+ 1 = 0. Therefore b = —1]

o (R+-3) The inverse of @ with respect to H is —a — 2. Indeed,
aB(-a—-2)=a+(-a—-2)+1=-1

and

(—a—2)BHa=(—a—2)+a+1=-1.

[To find the inverse of @, we need to find b such thata Bb = —1 (since —1 is the identity with
respect to H!) for example. This is equivalent toa + b+ 1= —1,ic., b = —a — 2]

o (R+4)
aBb=a+b+1=b+a+1=>0Ha.

e (Rx0) Sincea+b+ab e Z,wehavea®b=a+ b+ ab € 7.

e (Rx 1) On one hand,
aW(bXc)=aX(b+c+bc)=a+ (b+c+bc)+alb+c+be).
On the other hand,
(aRb)Re=(a+b+ab)Rc=(a+b+ab)+c+ (a+b+ab)c.
It follows from (R+4), (Rx1), (Rx+) and (R+x) for (Z, 4+, X) that
a® (bR ¢) = (aXb) K.
e (Rx+) On one hand,
aW(bBc)=aR(b+c+1)=a+(b+c+1)+alb+c+1).
On the other hand,
(aXb)H (aNc¢) = (a+b+ab)B (a+c+ac) = (a+b+ab) + (a +c+ac) + 1.
It then follows from (R+4), (Rx+) and (R+x) for (Z, +, X) that
a® (bBc) = («Xb)B («Xc).
e (R+x) On one hand,
bB)Ra=b+c+1)Ra=(b+c+1)+a+ (b+c+1)a
On the other hand,

(bRa)B(cXa)=(b+a+ba)B(c+a+ca)=(b+a+ba)+ (c+a+ca)+ 1.

8



It then follows from (R+4), (Rx+) and (R+X) for (Z, +, X) that
(bBHc)XRa= (bXa)B (cXa).
o (Z,H8,X) is commutative. Since (Z, +, X ) is a commutative ring,
aXkb=a+b+ab=b+a+ba=>bXa.
o The multiplicative identity with respect to X is 0. Indeed,
aX0=a+0+a0=a

and
OXa=0+a+ 0a=a.
[To find this, we need to find b in Z such that a X b = a holds for every a. This is equivalent to
finding b satistyinga + b + ab = a, i.e. b(1 + a) = 0, holds for every a. Therefore b = 0]

The units of (Z,H, X) are {0, —2}. To see this, we need to find integers a (and b) such that
al¥b =0, iec a+b+ab=0. Thisis equivalent to (a4 1)(b+ 1) = —1. Therefore, (¢ +1,b+1)
is either (1, —1) or (=1, 1). In other words, (a, b) is either (0, —2) or (=2, 0).

Definition. A field is a *commutative® ring (F, +, X ) satisfying the axioms

o (F,+) is an (abelian) additive group (with identity element 0)

o (F—{0}, x) isamultiplicative group (with identity element 1). Since (F, 4, X) is assumed
to be commutative, (F — {0}, X) is necessarily an abelian multiplicative group.

o 'The additive identity ‘0’ (the identity element in the group (F,+)) is distinct from the
multiplicative identity ‘1’ (the identity element in the group (F — {0}, x)).

Remark. If 1 = 0, thena = 1 X a = 0 x a = 0 (the last equality needs to be justified; see
Proposition ?). So the condition 1 # 0 denies any set with one element {1 = 0} any chance of
being a field.

Remark. By definition,
Field = Ring = Group

Remark. Groups encapsulate ‘symmetry’. Why rings (and not fields)? In general, elements of
a ring do not have (multiplicative) inverses and this is not a bad things and this actually makes
rings interesting. For example, the division algorithm would be vacuous if everything in Z had an
inverse (i.e. is divisible).

Theorem 22. If p is a prime number, then F, = Z, is a field.

Definition. The set C of complex numbers is the set of elements of the form a + bv/—1 where

a, b are real numbers.
We define addition and multiplication on C by

9



(@+bv=1)+ (c+dvV-1)=(a+c)+ (b+d)vV-1

(a+bv—1) x (c+dv—1) = (ac — bd) + (ad + bc)v/—1.
Theorem 23. The set C is a field.

We have special names for rings which satisfy some, but not all; of the axioms a field needs to

satisfy.

Definition. We say that a ring R with identity is called a division ring/skew field if it satisfies
all the axioms except the commutativity of multiplication (@ X b = b x a for all a,b in R)- a field
assumes the set of non-zero elements is an abelian group with respect to X.

The name ‘division ring’ is justified by the following assertion:

Proposition 24. Let R be a division ring and a is non-zero element of R. Ifab = ac, then b = c.

Example. Let H be the set of elements of the form

cl+c(p)p +c(q)g +clr)r
where
o ¢.c(p),c(q),c(r) range over R
e 1,p,q,r are symbols subject to the ‘multiplicative relations’

o p=pl=plg=ql=q lr=rl=r
o p=—-1,¢=-1,r"=-1
o pgr = —1

In terms of natural addition and multiplication (prescribed by the relations), H defines a divi-
sion ring. This is often referred to as Hamilton’s quaternions.

The table of (row)(column) is as follows:

1 p q r
111 p gq r
plp -1 7 —q
qglqg —r =1 p
rir q —p —1
By assumption, pq = —qp,qr = —rq,rp = —pr and therefore the ring is evidently non-

commutative. The multiplicative inverse is 1 (the element of H given by (¢, ¢(p),c(q),c(r)) =

(1,0,0,0)).

10



Every non-zero element of H has multiplicative inverse. To see this let @ be a non-zero element
of H of the form ¢ + ¢(p)p + ¢(¢)q + ¢(r)r. By the assumption, the non-negative real numver

R = +e(p)® +c(g)* +c(r)’
is indeed positive. Then the inverse of a is
b
R
where b = ¢ —¢(p)p — c(q)q — c(r)r, iec.,

(e = cp)p —clg)g — cr)r) = e — clp)p — ela)g — elrIr € HL

The element b plays the same role as the complex conjugation in C!

The set Z,, of equivalence classes with respect to ‘congruence mod 7’ is a rich source of non-
trivial examples of groups, rings and fields:

o (Z,,+) is a group.

® (Zy,+, x) is a commutative ring with identity. There are ¢(n) units in Z,. If n is not a
prime number, this is neither a field nor a division ring.

e Ifnisa prime number p, then Z, = F, is a field.

3 Polynomials
Definition. Let R be a ring. A polynomial f in one variable X with coeflicients in R is:
f=aX" "+ X"+t aX+e

where ¢, ¢,_1,...,c1,c are elements of R which are often referred to as the coefficients of /.
The set of all polynomials in one variable X with coefficients in R will be denoted by R[X].

Definition. The degree, denoted deg(f), of a non-zero polynomial f (in one variable X) is the
largest integer n for which its coefficient ‘c,” of X" is non-zero. The degree is not defined for the
zero polynomial.

Definition. A non-zero polynomial / = ¢, X" +¢, 1 X" '+ - -4 ¢1 X + ¢ of degree n is called
monic if the leading coeflicient ¢, = 1. The zero polynomial is defined to be monic.

Theorem 25. If R is a ring, then so is R[X] in terms of addition

n

and multiplication

(B)(X) =f(X)g(X)=>" (Z cr(f)cn_r(g)> X"

n

11



If' R is a ring with identity, then so is R[X]. If R is commutative, then so is R[X].
Proposition 26. If (R, +, X) is a ring with identity 1, then R[X] is not a division ring.
Proposition 27. Let (F, +, X) be a field. The units F[X]* of F[X] are F* = F — {0}

Theorem 28 (Division algorithm in the context of the polynomial ring F[X]). Let F be a field.
Let f and g be two polynomials in F[X] and assume, in particular, that g is non-zero. Then there
exists polynomials ¢ and 7 in F[X] such that

[=gq+r
where either 7 = 0 or deg(r) < deg(g).

Definition. Let f and g be polynomials in F[X]. We say that g divides f, or g is a factor of f,
if there exists a polynomial ¢ in F[X] such that f = gg.

Remark. One needs to be careful when it come to polynomial division. Suppose g divides f.
Then, for every unit p in F[X], the product gy also divides f! By Proposition 27, we know that
F[X]* = F — {0}, hence this assertions amounts to saying that if g divides f, then any non-zero
constant multiple of g also divides f.

The divisibility of a polynomial depends on F:
Examples.

X++/—1divides X*+1in C[X]. Indeed, (X +v/—1)(X—v/-1) = X*—(v/-1)* = X*+1.
On the other hand, no non-trivial polynomial in Q[X] divides f(X) = X* + 1 in Q[X]!

Corollary 29. Let F be a field. Let f in F[X] and a be an element of F. Then there exists ¢ in
F[X] and 7 in F such that
f=(X—a)g+tr
Corollary 30. Let f in F[X] and v in F. The remainder of f when divided by (X — «) is f ().
In particular, f (o) = 0 it and only if X — « is a factor of f(X) in F[X].

We may use the corollary to check if a given polynomial factorises or not factorises at all.

Theorem 31.(The Fundamental Theorem of Algebra) Let m > 1. Let ¢, ¢y, ..., ¢, be complex
numbers, where ¢, is assumed to be non-zero. Then the polynomial ¢, X" + - - - 4 ¢ has at least one
root inside C.

Theorem 32.(The Fundamental Theorem of Algebra with multiplicities) Letn > 1. Lete, ¢q, ..., ¢,
be complex numbers, where ¢, is assumed to be non-zero. Then the polynomial f(X) = ¢, X" +
-+ + ¢ has exactly 7 roots in C counted with multiplicities, i.e. there exist complex numbers
ai, ..., such that

F(X) = eo(X — 0)(X — ay) -+ (X — ).

12



Theorem 33.
e Any two polynomials f and g have a greatest common divisor in F[X].
e The ged of two polynomials in F[X] can be found by Euclid’s algorithm.

o Ifgcd(f,g) =y (a polynomial in F[X]), then there exist p, ¢ in F[X] such that

P +gq="7;

these polynomials p and ¢ can also be found from the extended Euclid’s algorithm.

4  Matrices

Let (R, 4+, X) be a ring and let Ma(R) be the set of ‘matrices’

(¢

where a, b, ¢, d are elements of R, together with addition
a b L a b\ f(fa+d b+
c d ¢ d) \c+cd d+d

a b a b\  (ad + b ab +bd
c d)\d d) \ed+dd cb+db )"

Theorem 34. My(R) is a ring. If R is a ring with identity, then so is Ma(R).

and multiplication

Remark. The additive identity, the identity element with respect to + defined above, is (8 8) ,

where each entry 0 is the additive identity in R as defined in (R4-2). If R is a ring with identity 1,

then ((1) [1)) is the identity.

Remark. In contrast to Theorem 25, Mg(R) is never commutative, even if R is commurtative.

Proposition 35. If (R, +, X) is a ring with identity but is not a ring with the property that for
every elements a, b in R, the product is always b = 0, then My(R) is neither commutative nor a
division ring,.

Remarks. An example of those rings excluded is the ring (G, *, X) given by a group (G, *) with

multiplicationa X b = e for all @, b in G. A field is an example of those rings considered in the
proposition.
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