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1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics– given definitions/axioms, derive gen-
eral statements about integers (that we know too well) via proofs and careful inspection of defini-
tions etc.

Proposition 1. Let a and b be integers and suppose b > 0. Then a = bq+ r for some integers q
and 0 ≤ r < b. The pair (q, r) is unique.

Definition. Let a and b be integers. We say that a divides b if there exists an integer c such that
b = ac.

Remark. The only integer 0 divides is 0 itself.

Definition. Let a and b be integers. A common divisor of a and b is a non-negative integer s
such that s divides both a and b. A gcd of a and b is the common divisor r satisfying the property
that if s is another (different) common divisor of a and b, then s < r.

Proposition 2. s divides r.

We can say something similar for the lcm of a and b.

Proposition 4. If a is a non-negative integer, gcd(a, 0) = a. This is not a definition.

Lemma 5. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b). This is not a definition.

Theorem 7 (Bezout’s identity). Let a and b be integers. Then there exist integers r and s such
that ar + bs = gcd(a, b).

The proof of Bezout explains only that these integers r and s exist and does not shed any light
on how to actually find them. In practice, we make appeal to Euclid’s algorithm instead.

Euclid’s algorithm is based on the following proposition:
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Proposition 6. Let a and b be integers. Suppose b > 0. By Proposition 1, there exists a uniqe
pair of integers q and 0 ≤ r < b such that a = bq+ r. Then gcd(a, b) = gcd(b, r).

How do we use Euclid’s algorithm to find r and s satisfying ar + bs = gcd(a, b)?

(NON-EXAMINABLE) If your Euclid’s algorithm looks like:

...
(sn) rn−2 = rn−1qn + rn

(sn+1) rn−1 = rnqn+1 + rn+1
...

(sN ) rN−1 = rNqN+1 + rN+1

(sN+1) rN = rN+1qN+2

then we know that gcd(a, b) is rN+1, because we may repeat Proposition 6 to deduce that

gcd(a, b) = · · · = gcd(rn−2, rn−1)
(sn)
= gcd(rn−1, rn)

(sn+1)
= gcd(rn, rn+1) = · · · =

gcd(rN−1, rN )
(sN )
= gcd(rN , rN+1)

(sN+1)
= rN+1.

We also see from (sN ) that rN+1 = −qN+1rN + rN−1. Indeed, for every n (e.g. N ,N −1, . . . ),
there exist integers Xn and Yn satisfying

rN+1 = Xnrn + Ynrn−1.

This will find us r and s such that ar + bs = rN+1.
Wemay prove the assertion by induction ‘in reverse’ (one can reindex all to make this rigorous).

We saw (XN ,YN ) = (−qN , 1) does the job. Supposing that there exist integers Xn and Yn such
that

rN+1 = Xnrn + Ynrn−1,

we aim at proving that there exists Xn−1 and Yn−1 such that

rN+1 = Xn−1rn−1 + Yn−1rn−2.

We will spell out Xn−1 and Yn−1 in terms of Xn and Yn. To see this, plug rn = (−qn)rn−1 + rn−2

obtained from (sn) into rN+1 = Xnrn + Ynrn−1. We then get

rN+1 = Xn((−qn)rn−1 + rn−2) + Ynrn−1 = (−qnXn + Yn)rn−1 + Xnrn−2,

hence (Xn−1,Yn−1) = (−qnXn + Yn,Xn) does the job. It is possible to use this inductively (as n
decreases) to find X ’s and Y ’s, starting with (XN ,YN ) = (−qN , 1).

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself.
Alternatively, we may define it as a positive integer whose integer divisors are {±1,±n}.

By Bezout, this is equivalent to the following: if a and b are integers and n divides ab, then n
divides either a or b. The latter definition allows us to prove:
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Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form

(−1)r∞
∏
p

prp

for some non-negative integers r∞ and rp, up to reordering of prime factors. The power rp is the
maximum number of time p divides the integer. For example, 45 = 32 · 5 so rp = 0 if p is not 3
nor 5, r3 = 2, r5 = 1 and r∞ = 0.

LetR be a relation on S. We let [a] = [a]R denote the subset of all b in S which are related to
a, i.e. aRb. IfR is an equivalence relation (satisfying a set of conditions), then

aRb if and only if [a] = [b].

Theorem 9. Given a set S, there exists a bijective correspondence between

• the equivalence relationsR on S,

• the partitionsP (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then (R,S) = (≡ Z), defined such that a ≡ b
mod n if and only if n divides b− a (for integers a and b), is an equivalence relation.

Definition. Let Zn denote the set of equivalence classes [a] with respect to (≡,Z).

Since a ≡ bmod n if and only if [a] = [b], a lot of equivalence classes may be identified. Indeed,

Proposition 11. |Zn| = n.

Proposition 1 proves Proposition 11. Indeed, if a is an integer (n is, by definition, a positive
integer), then there exists q and 0 ≤ r < n such that a = nq + r. Therefore a ≡ r, i.e. [a] = [r].
The proof also elaborates that Zn = {[0], [1], . . . , [n − 1]}. The element [r] is nothing other than
the set of integers b with remainder r when divided by n (i.e. b ≡ r mod n).

On Zn, we define +,−,×:
[a] + [b] = [a+ b]
[a]− [b] = [a− b]
[a][b] = [ab]

but no division. These do not depend on choice of representatives, i.e. if a ≡ a′ mod n, then
[a] + [b] = [a′] + [b] etc.

No division is defined but:

Definition. We say that [a] of Zn has multiplicative inverse if there exists an integer b such that
[a][b] = [1] (or equivalently ab ≡ 1 mod n). This plays the role of 1/[a] but not literally (1/[a] or
[1/a] simply does not make sense!). The multiplicative inverse is often written as [a]−1.
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Remark. The multiplicative inverse, if exists, is unique. Suppose that [b] and [c] are elements
of Zn such that [a][b] = [1] and [a][c] = [1]. Multiplying both sides of [c][a] = [1] by [b], we obtain
[c][a][b] = [1][b], i.e. [c] = [b].

Theorem 12. An element [a] of Zn has multiplicative inverse if and only if gcd(a, n) = 1.

The proof explains how to find the multiplicative inverse explicitly. If a is an integer such that
gcd(a, n) = 1 (which one can check in practice by Euclid’s algorithm), Euclid’s algorithm finds
integers b and c such that ab + nc = gcd(a, n) = 1. It then follows that ab ≡ 1 mod n, i.e.
[a][b] = [ab] = [1].

Proposition 13. An element [a] of Zn has no multiplicative inverse if and only if there exists b,
not congruent to 0 mod n, such that [a][b] = [0].

Example. [2]6[3]6 = [0]6.

It is possible to compute the number of elements in Zn with multiplicative inverses, using the

fundamental theorem of arithmetic: if =
∏
p

prp , then it is computed by
∏

p(p− 1)prp−1.

What is it useful for? It is possible to solve ‘linear congruence equations’: ax + b ≡ c mod n
(when gcd(a, n) = 1). Indeed, [x] = [c − b][a]−1 where [a]−1 is the multiplicative inverse of [a]
(this is NOT 1/[a]). What if gcd(a, n) > 1? Take Number Theory next year!

2 Chapter 4

Goal. Understand axioms of groups, ring and fields, together with their elementary properties.
Wrap your head around the idea that + and × are just operations that satisfy axioms.

Definition. A group is a set G with an operation ∗ on G satisfying the following axioms:

(G0) If a, b are elements of G , then a ∗ b is an element of G .

(G1) If a, b, c are elements of G , then a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(G2) There is an element e inG (called the identity element) such that a ∗ e = e ∗ a = a for every
element of G .

(G3) For every element a of G , there exists b in G such that a ∗ b = b ∗ a = e. The element b is
called the inverse of a.

(G4) If a, b are elements of G , then a ∗ b = b ∗ a.

When these five conditions hold, we say (G, ∗) (or simplyG if the operation ∗ is clear from the
context) is a commutative/abelian group. By groups, I shall mean abelian groups unless otherwise
specified.
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Example. Let S be a non-empty set. Let Sym(S) be the set of *bijective* functions a : S ! S

and ∗ be the composition ◦– if a and b are elements of G , then a ◦ b is the composite S b
! S a

! S
sending s to a(b(s)). Then (Sym(S), ◦) is a group.

Proposition 14. Let (G, ∗) be a group.

• The identity element of G is unique.

• Each element a of G has a unique inverse (written multiplicatively as a−1).

• If a ∗ b = a ∗ c, then b = c. Similarly, if b ∗ a = c ∗ a, then b = c.

• For any a, b in G , then (a ∗ b)−1 = b−1 ∗ a−1.

Definition. A ring is a set R which comes equipped with two operations, + (addition) and ×
(multiplication), satisfying the following axioms:

(R+0) If a, b are elements of R, then a+ b is an element of R.

(R+1) If a, b, c are elements of R, then a+ (b+ c) = (a+ b) + c.

(R+2) There is an element 0 inR such that a+0 = 0+a = a for every element ofR– the element is
sometimes referred to as the additive identity element, or the identity element with respect
to +/addition.

(R+3) For every element a of R, there exists b in G such that a+ b = b+ a = 0.

(R+4) If a, b are elements of R, then a+ b = b+ a.

(R×0) If a, b are elements of R, then a× b is an element of R.

(R×1) If a, b, c are elements of R, then a× (b× c) = (a× b)× c.

(R×+) If a, b, c are elements of R, then

a× (b+ c) = a× b+ a× c.

(R+×) If a, b, c are elements of R, then

(b+ c)× a = b× a+ c× a.

Remark. The first five axioms say that (G, ∗) = (R,+) is an additive (abelian) group.

Remark. As seen in groups, the operations+ and× are just symbols/names given to operations
that satisfy a bunch of conditions that pin down + and× on Z (it is precisely for this reason that
the symbols ‘+’ and ‘×’ are used conventionally). See examples below.

Remark. We often write ab instead of a× b.

Definition. A ring R is said to be a commutative ring if a× b = b× a holds for all a, b in R.
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Example. The set of 2-by-2 matrices with entries in the real numbers R is a non-commutative

ring. For example,

(
1 0
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
but

(
0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
. The non-

commutativity holds more generally (see Proposition 35).

Proposition 15. Let (R,+,×) be a ring.

• There is a unique zero element,

• Any element has a unique additive inverse.

• If a+ b = a+ c, then b = c.

Proposition 16. Let R be a ring. For every element a of R, we have 0a = a0 = 0.

Definition. Let R be a ring. If R has an element 1 (the multiplicative identity element) such
that, for every a inR, we have a×1 = 1×a = a, then we sayR is a ring with identity (commonly
understood as *multiplicative* identity). The additive identity 0 and the multiplicative identity
(if exists) do not have to be distinct.

Theorem 17. The set Zn, with addition and multiplication modulo n as defined before, is a
commutative ring with identity [1].

Examples (of rings without identity).
•The set of even integers is a ring (with respect to usual+ and×) without identity– the set of

odd integers is not even a ring!

• Let R be the set of continuous functions f : R ! R such that

∫ ∞

0

f < ∞. This is a ring.

However, the identity function 1 is not an element of R as

∫ ∞

0

1 = ∞.

• A group (G, ∗) with trivial multiplication is not a ring with identity, unless G = {e}.

Definition. LetR be a ring with identity element 1. An element a inR is called a unit if there
is an element b in R such that ab = ba = 1. The element b is called the inverse of b, and is written
as a−1.

Remark. If R is a ring with identity, an element a is a unit if and only if a has multiplicative
inverse. To put it another way,

{units in R} = {elements in R with multiplicative inverses}.

Definition. We will denote by R× the units of R.

Proposition 18. The units of Zn are the subset of equivalence classes [a] in Z represented by
integers a such that gcd(a, n) = 1. Furthermore, |Zn| = φ(n).

The following proposition puts together some of the key properties of the multiplicative iden-
tity 1.
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Proposition 19. Let R be a ring with (multiplicative) identity 1.

• The identity element 1 is unique.

• If 1 is distinct from the additive identity 0, then 0 is NOT a unit.

• 1 is a unit and its inverse is 1 itself.

Proposition 20. Let R be a ring with (multiplicative) identity 1.

• If a is a unit, the inverse of a is unique.

• If a is a unit, then so is a−1– the inverse of a−1 is indeed a.

• If a and b are units, then so is ab; and its inverse is b−1a−1.

The frequency with which the proof of Proposition 14 was useful in proving statements in the
propositions is suggestive of:

Theorem 21. If (R,+,×) is a ring with identity, (R×,×) is a group. If, furthermore, (R,+,×)
is commutative, (R×,×) is abelian.

Example. Let (Z,+,×) be the ring of integers with usual addition + and multiplication ×.
Define new addition �:

a� b = a+ b+ 1

and new multiplication
a� b = a+ b+ ab

in terms of old+ and×. Then this is a commutative ring with identity, where the zero identity (the
identity element with respect to addition, as prescribed by (R+2)) is −1 and the multiplicative
identity is 0!

Checking why this is true involves a lot of work:

• (R+0) Since a+ b+ 1 ∈ Z, we have a� b = a+ b+ 1 ∈ Z.

• (R+1) On one hand,

a� (b� c) = a� (b+ c + 1) = a+ (b+ c + 1) + 1 = a+ b+ c + 1.

On the other hand,

(a� b)� c = (a+ b+ 1)� c = (a+ b+ 1) + c + 1 = a+ b+ c + 1.

Therefore
a� (b� c) = (a� b)� c.

• (R+2) (−1) is the identity element with respect to �. Indeed,

a� (−1) = a+ (−1) + 1 = a
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and
(−1)� a = (−1) + a+ 1 = a.

[To find the identity, we need to find b in Z such that a� b = a holds for any a. By definition,
this is equivalent to finding b satisfying a+ b+ 1 = a, i.e. b+ 1 = 0. Therefore b = −1.]

• (R+3) The inverse of a with respect to � is −a− 2. Indeed,

a� (−a− 2) = a+ (−a− 2) + 1 = −1

and
(−a− 2)� a = (−a− 2) + a+ 1 = −1.

[To find the inverse of a, we need to find b such that a� b = −1 (since−1 is the identity with
respect to �!) for example. This is equivalent to a+ b+ 1 = −1, i.e., b = −a− 2.]

• (R+4)
a� b = a+ b+ 1 = b+ a+ 1 = b� a.

• (R×0) Since a+ b+ ab ∈ Z, we have a� b = a+ b+ ab ∈ Z.

• (R× 1) On one hand,

a� (b� c) = a� (b+ c + bc) = a+ (b+ c + bc) + a(b+ c + bc).

On the other hand,

(a� b)� c = (a+ b+ ab)� c = (a+ b+ ab) + c + (a+ b+ ab)c.

It follows from (R+4), (R×1), (R×+) and (R+×) for (Z,+,×) that

a� (b� c) = (a� b)� c.

• (R×+) On one hand,

a� (b� c) = a� (b+ c + 1) = a+ (b+ c + 1) + a(b+ c + 1).

On the other hand,

(a� b)� (a� c) = (a+ b+ ab)� (a+ c + ac) = (a+ b+ ab) + (a+ c + ac) + 1.

It then follows from (R+4), (R×+) and (R+×) for (Z,+,×) that

a� (b� c) = (a� b)� (a� c).

• (R+×) On one hand,

(b� c)� a = (b+ c + 1)� a = (b+ c + 1) + a+ (b+ c + 1)a.

On the other hand,

(b� a)� (c� a) = (b+ a+ ba)� (c + a+ ca) = (b+ a+ ba) + (c + a+ ca) + 1.
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It then follows from (R+4), (R×+) and (R+×) for (Z,+,×) that

(b� c)� a = (b� a)� (c� a).

• (Z,�,�) is commutative. Since (Z,+,×) is a commutative ring,

a� b = a+ b+ ab = b+ a+ ba = b� a.

•The multiplicative identity with respect to � is 0. Indeed,

a� 0 = a+ 0 + a0 = a

and
0� a = 0 + a+ 0a = a.

[To find this, we need to find b in Z such that a� b = a holds for every a. This is equivalent to
finding b satisfying a+ b+ ab = a, i.e. b(1 + a) = 0, holds for every a. Therefore b = 0.]

The units of (Z,�,�) are {0,−2}. To see this, we need to find integers a (and b) such that
a� b = 0, i.e. a+ b+ ab = 0. This is equivalent to (a+1)(b+1) = −1. Therefore, (a+1, b+1)
is either (1,−1) or (−1, 1). In other words, (a, b) is either (0,−2) or (−2, 0).

Definition. A field is a *commutative* ring (F ,+,×) satisfying the axioms

• (F ,+) is an (abelian) additive group (with identity element 0)

• (F−{0},×) is a multiplicative group (with identity element 1). Since (F ,+,×) is assumed
to be commutative, (F − {0},×) is necessarily an abelian multiplicative group.

• The additive identity ‘0’ (the identity element in the group (F ,+)) is distinct from the
multiplicative identity ‘1’ (the identity element in the group (F − {0},×)).

Remark. If 1 = 0, then a = 1 × a = 0 × a = 0 (the last equality needs to be justified; see
Proposition ?). So the condition 1 6= 0 denies any set with one element {1 = 0} any chance of
being a field.

Remark. By definition,
Field⇒ Ring⇒ Group

Remark. Groups encapsulate ‘symmetry’. Why rings (and not fields)? In general, elements of
a ring do not have (multiplicative) inverses and this is not a bad things and this actually makes
rings interesting. For example, the division algorithm would be vacuous if everything in Z had an
inverse (i.e. is divisible).

Theorem 22. If p is a prime number, then Fp = Zp is a field.

Definition. The set C of complex numbers is the set of elements of the form a+ b
√
−1 where

a, b are real numbers.

We define addition and multiplication on C by
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(a+ b
√
−1) + (c + d

√
−1) = (a+ c) + (b+ d)

√
−1

(a+ b
√
−1)× (c + d

√
−1) = (ac− bd) + (ad + bc)

√
−1.

Theorem 23. The set C is a field.

We have special names for rings which satisfy some, but not all, of the axioms a field needs to
satisfy.

Definition. We say that a ring R with identity is called a division ring/skew field if it satisfies
all the axioms except the commutativity of multiplication (a× b = b× a for all a, b in R)– a field
assumes the set of non-zero elements is an abelian group with respect to ×.

The name ‘division ring’ is justified by the following assertion:

Proposition 24. LetR be a division ring and a is non-zero element ofR. If ab = ac, then b = c.

Example. Let H be the set of elements of the form

c1 + c(p)p+ c(q)q+ c(r)r

where

• c, c(p), c(q), c(r) range over R

• 1, p, q, r are symbols subject to the ‘multiplicative relations’

• 1p = p1 = p, 1q = q1 = q, 1r = r1 = r

• p2 = −1, q2 = −1, r2 = −1

• pqr = −1

In terms of natural addition and multiplication (prescribed by the relations),H defines a divi-
sion ring. This is often referred to as Hamilton’s quaternions.

The table of (row)(column) is as follows:

1 p q r
1 1 p q r
p p −1 r −q
q q −r −1 p
r r q −p −1

By assumption, pq = −qp, qr = −rq, rp = −pr and therefore the ring is evidently non-
commutative. The multiplicative inverse is 1 (the element of H given by (c, c(p), c(q), c(r)) =
(1, 0, 0, 0)).
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Every non-zero element ofH has multiplicative inverse. To see this let a be a non-zero element
of H of the form c + c(p)p+ c(q)q+ c(r)r. By the assumption, the non-negative real numver

R = c2 + c(p)2 + c(q)2 + c(r)2

is indeed positive. Then the inverse of a is
b
R

where b = c− c(p)p− c(q)q− c(r)r, i.e.,

1

R
(c− c(p)p− c(q)q− c(r)r) =

1

R
c− 1

R
c(p)p− 1

R
c(q)q− 1

R
c(r)r ∈ H.

The element b plays the same role as the complex conjugation in C!

The set Zn of equivalence classes with respect to ‘congruence mod n’ is a rich source of non-
trivial examples of groups, rings and fields:

• (Zn,+) is a group.

• (Zn,+,×) is a commutative ring with identity. There are φ(n) units in Zn. If n is not a
prime number, this is neither a field nor a division ring.

• If n is a prime number p, then Zp = Fp is a field.

3 Polynomials

Definition. Let R be a ring. A polynomial f in one variable X with coefficients in R is:

f = cnX n + cn−1X n−1 + · · ·+ c1X + c

where cn, cn−1, . . . , c1, c are elements of R which are often referred to as the coefficients of f .

The set of all polynomials in one variable X with coefficients in R will be denoted by R[X ].

Definition. The degree, denoted deg(f ), of a non-zero polynomial f (in one variable X ) is the
largest integer n for which its coefficient ‘cn’ of X n is non-zero. The degree is not defined for the
zero polynomial.

Definition. A non-zero polynomial f = cnX n+ cn−1X n−1+ · · ·+ c1X + c of degree n is called
monic if the leading coefficient cn = 1. The zero polynomial is defined to be monic.

Theorem 25. If R is a ring, then so is R[X ] in terms of addition

(f + g)(X ) = f (X ) + g(X ) =
∑
n

(cn(f ) + cn(g))X n

and multiplication

(fg)(X ) = f (X )g(X ) =
∑
n

(∑
r

cr(f )cn−r(g)

)
X n.
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If R is a ring with identity, then so is R[X ]. If R is commutative, then so is R[X ].

Proposition 26. If (R,+,×) is a ring with identity 1, then R[X ] is not a division ring.

Proposition 27. Let (F ,+,×) be a field. The units F [X ]× of F [X ] are F× = F − {0}.

Theorem 28 (Division algorithm in the context of the polynomial ring F [X ]). Let F be a field.
Let f and g be two polynomials in F [X ] and assume, in particular, that g is non-zero. Then there
exists polynomials q and r in F [X ] such that

f = gq+ r

where either r = 0 or deg(r) < deg(g).

Definition. Let f and g be polynomials in F [X ]. We say that g divides f , or g is a factor of f ,
if there exists a polynomial q in F [X ] such that f = gq.

Remark. One needs to be careful when it come to polynomial division. Suppose g divides f .
Then, for every unit γ in F [X ], the product gγ also divides f ! By Proposition 27, we know that
F [X ]× = F − {0}, hence this assertions amounts to saying that if g divides f , then any non-zero
constant multiple of g also divides f .

The divisibility of a polynomial depends on F :

Examples.

X+
√
−1 dividesX 2+1 inC[X ]. Indeed, (X+

√
−1)(X−

√
−1) = X 2−(

√
−1)2 = X 2+1.

On the other hand, no non-trivial polynomial in Q[X ] divides f (X ) = X 2 + 1 in Q[X ]!

Corollary 29. Let F be a field. Let f in F [X ] and α be an element of F . Then there exists q in
F [X ] and r in F such that

f = (X − α)q+ r.

Corollary 30. Let f in F [X ] and α in F . The remainder of f when divided by (X −α) is f (α).
In particular, f (α) = 0 if and only if X − α is a factor of f (X ) in F [X ].

We may use the corollary to check if a given polynomial factorises or not factorises at all.

Theorem 31.(The Fundamental Theorem of Algebra) Let n ≥ 1. Let c, c1, . . . , cn be complex
numbers, where cn is assumed to be non-zero. Then the polynomial cnX n+ · · ·+ c has at least one
root inside C.

Theorem32.(The FundamentalTheoremofAlgebrawithmultiplicities) Let n ≥ 1. Let c, c1, . . . , cn
be complex numbers, where cn is assumed to be non-zero. Then the polynomial f (X ) = cnX n +
· · · + c has exactly n roots in C counted with multiplicities, i.e. there exist complex numbers
α1, . . . , αn such that

f (X ) = cn(X − αn)(X − αn−1) · · · (X − α1).
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Theorem 33.

• Any two polynomials f and g have a greatest common divisor in F [X ].

• The gcd of two polynomials in F [X ] can be found by Euclid’s algorithm.

• If gcd(f , g) = γ (a polynomial in F [X ]), then there exist p, q in F [X ] such that

fp+ gq = γ;

these polynomials p and q can also be found from the extended Euclid’s algorithm.

4 Matrices

Let (R,+,×) be a ring and letM2(R) be the set of ‘matrices’(
a b
c d

)
where a, b, c, d are elements of R, together with addition(

a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c + c′ d + d′

)
and multiplication (

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + db′

)
.

Theorem 34. M2(R) is a ring. If R is a ring with identity, then so isM2(R).

Remark. The additive identity, the identity elementwith respect to+ defined above, is

(
0 0
0 0

)
,

where each entry 0 is the additive identity inR as defined in (R+2). IfR is a ring with identity 1,

then

(
1 0
0 1

)
is the identity.

Remark. In contrast to Theorem 25,M2(R) is never commutative, even if R is commutative.

Proposition 35. If (R,+,×) is a ring with identity but is not a ring with the property that for
every elements a, b in R, the product is always ab = 0, thenM2(R) is neither commutative nor a
division ring.

Remarks. An example of those rings excluded is the ring (G, ∗,×) given by a group (G, ∗)with
multiplication a × b = e for all a, b in G . A field is an example of those rings considered in the
proposition.
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