1. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a map. Show that the following properties of f are equivalent:
(a) f is continuous;
(b) For every subset $A \subset X$ one has $f(\bar{A}) \subset \overline{f(A)}$.
(c) For every closed set $F \subset Y$ the preimage $f^{-1}(F) \subset X$ is closed in X.
(a) \Longrightarrow (b). For $x \in \bar{A}$ consider an open subset $f(x) \in U \subset Y$. Then $f^{-1}(U) \subset X$ is open and contains x. Therefore $f^{-1}(U) \cap A \neq \emptyset$ and hence $U \cap f(A) \neq \emptyset$. This shows that $f(x) \in \overline{f(A)}$, i.e. $f(\bar{A}) \subset \overline{f(A)}$.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$. Let $F \subset Y$ be closed. Denote $A=f^{-1}(F) \subset X$. Then $f(\bar{A}) \subset$ $\overline{f(A)}=\bar{F}=F$ which shows that $\bar{A} \subset f^{-1}(F)=A$, i.e. A is closed.
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$. This was explained in lectures.
2. In the finite complement topology on \mathbb{R}, to what point (or points) does the sequence $x_{n}=1 / n$ converge?

This sequence converges to any $x_{0} \in \mathbb{R}$ as any neighbourhood of x_{0} contains all terms of the sequence x_{n} except finitely many.
3. Let $y_{n}=1$ for n even and $y_{n}=-1$ for n odd. In the finite complement topology on \mathbb{R}, to what point (or points) does the sequence y_{n} converge?

This sequence has no limit.
4. Show that a subspace of a Hausdorff space is Hausdorff.

Let X be Hausdorff and $A \subset X$. For $x, y \in A, x \neq y$ we may find open $x \in U \subset X$ and $y \in V \subset X$ with $U \cap V=\emptyset$. Then $U^{\prime}=U \cap A$ and $V^{\prime}=V \cap A$ are open disjoint subsets of A containing x and y correspondingly, i.e. A is Hausdorff.
5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the equation

$$
F(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if } \quad(x, y) \neq(0,0) \\ 0, & \text { if } \quad(x, y)=(0,0)\end{cases}
$$

(a) Show that for any $x_{0} \in \mathbb{R}$ the function $y \mapsto F\left(x_{0}, y\right)$ is continuous.

If $x_{0} \neq 0$ the $F\left(x_{0}, y\right)$ is continuous as ratio or two polynomials with nonzero denominator. If $x_{0}=0$ then $F\left(x_{0}, y\right)=0$ for any y.
(b) Show that for any $y_{0} \in \mathbb{R}$ the function $x \mapsto F\left(x, y_{0}\right)$ is continuous.

As above.
(c) Show that the function $x \mapsto F(x, x)$ is discontinuous.

For $x \neq 0$ we have $F(x, x)=1 / 2$ and for $x=0$, we have $F(x, x)=0$.
(d) Show that $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is discontinuous.
F is discontinuous since its restriction onto the line $x=y$ is discontinuous.
6. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not continuous at every point $x \in \mathbb{R}$.

Let $f(x)=1$ for all $x \in \mathbb{R}$ rational and $f(x)=-1$ for all $x \in \mathbb{R}$ irrational. Then f is discontinuous at every $x \in \mathbb{R}$ as it can be represented as the limit of either rational or irrational numbers.
7. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at a single point $x_{0} \in \mathbb{R}$.

Let $f(x)=x-x_{0}$ for all $x \in \mathbb{R}$ rational and $f(x)=x_{0}-x$ for all $x \in \mathbb{R}$ irrational. Then f is discontinuous at every $x \in \mathbb{R}-\left\{x_{0}\right\}$ and it is continuous at $x=x_{0}$.

