$3^{\text {rd }}$ year pathway presentation at 12:00
Recap quiz

1) What is the dual ct
$\max c^{\top} x$
sub to $A \underline{x} \leqslant \underline{b}$ $x \geqslant \underline{c}$

$$
\begin{aligned}
& \min b^{\top} y \\
& \text { sub to } A^{\top} \underline{y} \geqslant c \\
& \underline{y} \geqslant 0
\end{aligned}
$$

2)

	Primal	Dual	
Goal	max	min	
\# Variables	n	m	
\# unrestricted variables	n^{\prime}	m^{\prime}	
\# constraints	m	n	
\# equality constraints	m^{\prime}	n^{\prime}	

3) Weak duality theorem says:

If \underline{x} is a feasible to LP above and y is a fecisible to its dual then $b^{\top} \geq \geqslant c^{7} x$

Strong duality theorem says:
If \underline{x} is a optimal to LP above and y is a optimal to its dual then bTy $=\underline{c}$

Application of duality (Supervisor problem)
your supervisar asks you to solve a very large $C P$ $\max \subseteq T x$
sub to $A x \leqslant b$

$$
x \geqslant 0
$$

You find an aptimal solution \underline{x}^{*} e.g. using simplex.
How can yau quickly convince your superviser
that \underline{x}^{*} is aptimal (supervisor doesn't want to cherk all yar simplex steps)
Ans: Give your superviscr bcth \underline{x}^{*} and the optimal Solutim y^{*} to the dual.
What tnnee quick chechs must superviser do to be convinced that $\underline{x} *$ is aptimal?
Supervisar chechs cay \underline{x}^{*} is feasible for primal LP [b] x * is feasible for dual $\angle P$

$$
\text { (c) } \underline{c T} \underline{\underline{x}} \underline{x}^{*}=\underline{b}^{\top} \underline{y}^{*}
$$

If so, supervisor concludes \underline{x}^{*} is optimal for primal and yt is cptimal for dual why?
y* sometimes called certificate ct aptimality.
Why can supervisor conchucle this?
suppore x^{*} is not aptimal,
So \exists feasible solution x s.t. $\underline{c}^{\top} \underline{x}>c^{\top} x^{*}=\underline{b}^{\top} \underline{y}^{*}$
But $\underline{c}^{\top} \underline{x}>\underline{b T}^{*} \underline{*}^{*}$ contradicts weak duality thm,
Sc x^{*} cptimal.

Complementary slackness
Thun (Principle of complementary slackness)
suppose we have on LP in standard inequality
form $\max c^{\top} x$
with. n variables, m constraints
subto $A x \leq b$ it constraint in primal says

$$
\underline{x} \geqslant 0
$$

$$
(A x)_{i} \leq b_{i}
$$

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leqslant b_{i}
$$

so its dual is min $\underline{b}^{2} \underline{y}$
sub tc $A^{\top} \underline{y} \geqslant c$

$$
\begin{array}{ll}
\underline{y} \geqslant \underline{0} \quad\left(A^{\top} y\right)_{j} \geqslant c_{j} \\
\quad a_{1 j} y_{1}+a_{2 j} y_{2}+\cdots+a_{m j} y_{m} \geqslant c_{j}
\end{array}
$$

We have x is optimal for the primal LP and y is optimal for the dual if andarlyit
ia) x is feasible for primal [P and \underline{y} is feasible for dual LP
(b) for each; we have $x_{j}=0$ or $\left(A^{T}\right)_{j}=C_{j}$
(SC jth variable of primal $L P$ is O or $j^{\text {th }}$ constraint of dual is fight)
(c) for each i we have $y_{i}=0$ or $(A x)_{i}=b_{i}$
(Sc it variable of dual iso or $i^{\text {th }}$ constraint of primal $\angle P$ is tight)
Pf omitted this year and non-examinable

Example of using complementary slackness
Example 9.1. Consider the linear program:

$$
\begin{aligned}
& \text { maximise } \quad 2 x_{1}-x_{2}+8 x_{3} \\
& \text { subject to } \quad 2 x_{3} \leq 1 \text { COn । } \\
& \begin{array}{r}
2 x_{1}-4 x_{2}+6 x_{3} \leq 3 \\
-x_{1}+3 x_{2}+4 x_{3} \leq 2 \\
x_{1}, x_{2}, x_{3}>0
\end{array} \quad \text { can } 2
\end{aligned}
$$

Show that $x_{1}=17 / 2, x_{2}=7 / 2, x_{3}=0$ is an optimal solution to this program.

Idea: check whether given x and sone (to be determined) y satisty $(a),(b),(c)$ in complementary slackness
and if so, con conclude x is optimal for $\angle P$ above and \underline{y} is optimal for its dual.

1) Write down the dual: minimise $y_{1}+3 y_{2}+2 y_{3}$ sub to

$$
\begin{aligned}
2 y_{2}-y_{3} \geqslant 2 & \text { can 11 } \\
-4 y_{2}+3 y_{3} & \text { can 21 } \\
2 y_{1}+6 y_{2}+4 y_{3} \geqslant 8 & \text { con 31 } \\
y_{1}, y_{2}, y_{3} \geqslant 0 . &
\end{aligned}
$$

2) Check given solution x is feasible which primal constraints are fight?
Which primal variables are zero?

$$
\begin{aligned}
& \text { con } 12 \times 0 \leqslant 1 \checkmark \text { not tight } \\
& \operatorname{con} 2 \times \frac{17}{2}-4 \times \frac{7}{2}+6 \times 0=3 \checkmark \text { tight } \\
& \begin{array}{l}
\frac{x_{1} \neq 0}{x_{2} \neq 0} \\
x_{3}=0
\end{array}
\end{aligned}
$$

3) Complementary slackness (b), (c) gives us equations that y must satisty it x is optimal for primal th and \underline{y} is optimal for dual

$$
y_{1}=0
$$

San' and con 2' tight

$$
\begin{gathered}
2 y_{2}-y_{3}=2 \\
-4 y_{2}+3 y_{3}=-1
\end{gathered}
$$

3) Complementary slackness (b), (c) gives us equations that y must satisty it x is optimal.

$$
y_{1}=0
$$

$$
\begin{array}{ll}
\text { san' and con 2' tight } \\
2 y_{2}-y_{3}=2 & \text { (1) } \\
-4 y_{2}+3 y_{3}=-1 & \text { (2) }
\end{array}
$$

4) solve equations to determine y

$$
y_{1}=0
$$

$$
2(1)+(2)
$$

$$
y_{3}=3
$$

$$
y_{2}=5 / 2
$$

By ar choice of y, x and y satisty (b) and (c) from the theorem.
5) Check y is feasible
con 1', con21 holds by construction
con $z^{\prime} \quad 2 y_{1}+6 y_{2}+4 y_{3} \geqslant 8$

$$
2 \times 0+6 \times \frac{5}{2}+4 \times 3=27 \geqslant 8
$$

6) Conclusion: have found that x, y satisty
complemental slackness (i.e. (a), (b), (c)
from theorem), hence x is optimal for primal y is optimal for dual

How would we show x is not optimal?

- If there's no solution fer y in step 4 then x is not optimal (by theorem)
- If 1 is not feasible in step 6 then x is not optimal (by theorem).
When solving equations in steep 4 it the solution for y is not unique check it any ot them is feasible for the dual. If sc then \underline{x} is optimal for primal LP If not then x is not optimal for primal Lp.

Modelling Revisited (non-linear objective)
Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Outputs			Inputs		
Process	X	Y		Metal	Electricity	Labour
1	4	0		100 kg	800 kWh	16 hrs
2	0	1		70 kg	600 kWh	16 hrs
3	3	1		120 kg	2000 kWh	50 hrs
4	6	3		270 kg	4000 kWh	48 hrs

We have unlimited resources and wish to produce 120 parts x and 50 parts of y
How quickly can this be done. (Processes con run simultaneasho)
Ans: decision variably $P_{i}=\#$ hows we sun process i $i=1, \ldots, 4$
dummy vaiabks $x, y=$ amount of x, y produced
m, e, l = amount of metal, electricity and labour used $t=$ total time t.
minimise t
subject to

$$
\begin{aligned}
& x=4 p_{1}+3 p_{3}+6 p_{4} \\
& y=p_{2}+p_{3}+3 p_{4} \\
& x \geqslant 120 \\
& y \geqslant 50 \\
& t=\max \left(p_{1}, p_{2}, P_{3}, p_{4}\right) \\
& P_{1}, P_{2}, P_{3}, P_{4} \geqslant 0, \quad x, y, t \text { unrestricted }
\end{aligned}
$$

(not a linear program!)
(1) minimise t
subject to

$$
\begin{aligned}
& x=4 p_{1}+3 p_{3}+6 p_{4} \\
& y=p_{2}+p_{3}+3 p_{4} \\
& x \geq 120 \\
& y \geqslant 50 \\
& t=\max \left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
& p_{1,} p_{2}, p_{3}, p_{4} \geqslant 0, x, y, t \text { unrestricted, }
\end{aligned}
$$

The following LP has sane optimal solution as (1)
(2) minimise t
sub to

$$
\begin{aligned}
& x=4 p_{1}+3 p_{3}+6 P_{4} \\
& y=p_{2}+p_{3}+3 P_{4} \\
& x \geqslant 1_{2} 0 \\
& y \geqslant 50 \\
& t \geqslant P_{1} \\
& t \geqslant>p_{2} \\
& t \geqslant p_{3} \\
& t \geqslant P_{4} \\
& P_{1}, p_{3}, P_{3}, P_{4} \geqslant 0, x, y_{2} t \text { unvestrited }
\end{aligned}
$$

Why? True or false?
Every feasible scution ot (1) is feasible for (2)
True: if $t=\max _{i=1}\left(P_{i}\right)$ then $t \geqslant P_{i} i=1, \ldots, 4$, Every feasible is, solution of (2) is feasible for (1) False: if $t \geqslant P_{i} \forall \forall$ could have $t>\max \left(P_{i}\right)$
Optimal solution of 27 is feasible for (1)
Trine: suppose not. It t^{*} is optimal for (2) but not feasible for (1) then this is became $t^{*} \rightarrow$ max (p_{i}). Then could reduce t^{+}while still satis frying all constraints in (2), a Contradiction.
so optimal solution for (2) also optimal for (1).

This works generally when we have a program of following form (with variable $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}$
$\operatorname{minimise}\left(\max \left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$
sub to linear constraints in variables sign restrictions of variables

This program has same optimal solution as L.P below
minimise m
sub to save linear constraints and

$$
\begin{aligned}
& m \geqslant x_{1} \\
& m \geqslant x_{2} \\
& \vdots \\
& m \geqslant x_{k}
\end{aligned}
$$

same sign restrictions m unrestricted.

Remark Sane idea works for maximising a minimum but not for maximising a maximum or minimising on minimum (what goes wrong if we try to use the save method).

Piecewise linear concave/convex dbjectives

Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Outputs			Inputs		
Process	X	Y		Metal	Electricity	Labour
1	4	0		100 kg	800 kWh	16 hrs
2	0	1		70 kg	600 kWh	16 hrs
3	3	1		120 kg	2000 kWh	50 hrs
4	6	3		270 kg	4000 kWh	48 hrs

limited resources:
Revenue
6000 kg metal
100000 kwh electric
1000 haws labour
y sells for \& 1860 per unit
X sells for trace per unit

As before $P_{i}=\#$ hours of process i

$$
\begin{aligned}
m, e, l & =\text { amount of metal/electric/labowr used } \\
x, y & =\text { mont of } x, y \text { produced. }
\end{aligned}
$$

maximise $1000 x+1800 y$
subject to

$$
\begin{aligned}
x & =4 p_{1}+3 p_{3}+6 p_{4} \\
y & =p_{2}+p_{3}+3 p_{4} \\
m & =100 p_{1}+70 p_{2}+120 p_{3}+270 p_{4} \\
e & =800 p_{1}+600 p_{2}+2000 p_{3}+4000 p_{4} \\
l & =16 p_{1}+16 p_{2}+50 p_{3}+48 p_{4} \\
m & \leq 6000 \\
e & \leq 100000 \\
l & \leq 1000 \\
p_{1}, p_{2}, p_{3}, p_{4} & \geq 0 \\
x, y & \text { unrestricted } \\
m, e, l & \text { unrestricted }
\end{aligned}
$$

Piecewise linear concave/convex dojectives

Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Outputs			Inputs		
Process	X	Y		Metal	Electricity	Labour
1	4	0		100 kg	800 kWh	16 hrs
2	0	1		70 kg	600 kWh	16 hrs
3	3	1		120 kg	2000 kWh	50 hrs
4	6	3		270 kg	4000 kWh	48 hrs

limited resources:
6000 kg metal
100000 kwh electric 1000 hours labour

Revenue
Y sells for $\& 1800$ per unit
X sells for $\alpha 1000$ per unit first 30

$$
\star>00 \quad \text { next } 60
$$

$$
\text { t } 400 \text { remaining }
$$

Revenue from $y=1800 y$
Revenue from $X=f(x)$
Idea: write $f(x)$ as a minimum.

$$
\begin{aligned}
f(x) & = \begin{cases}1000 x & \text { if } x \in[0,30] \\
1000 \times 30+700(x-30) & \text { if } x \in[30,90] \\
1000 \times 30+700 \times 60+400(x-90) & \text { if } x \geqslant 90\end{cases} \\
& = \begin{cases}1000 x & \text { if } x \in(0,30) \\
700 x+9000 & \text { if } x \in(30,90) \\
400 x+36000 & \text { if } x \geqslant 90\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\text { vevenue from } x \\
& \text { GOOCO }
\end{aligned}=
$$

This works because the slopes of the lines are decreasing as x increases (piecewise linear concave function)

Similar metned works fer maximising piecewise linear convex function.

