1. Let X be a topological space; let A be a subspace of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

For $x \in A$ let $U_x \subset A$ denote an open subset containing x. Then $A = \bigcup_{x \in A} U_x$ is open as a union of open subsets.

2. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

"U is open in Y" means that $U = V \cap Y$ where $V \subset X$ is open in X. If Y is open in X the the intersection $V \cap Y$ is open in X (as intersection of two open subsets). Hence, $U = V \cap Y$ is open in X.

3. Let Y be the subset $[0,1) \cup \{2\}$ of \mathbb{R} . Show that in the subspace topology on Y the single point $\{2\}$ is closed and open. Besides, show that the set [0,1) is closed and open in Y.

The intersection $(1.5, 2, 5) \cap Y$ is $\{2\}$ and $[1.5, 2, 5] \cap Y = \{2\}$. This shows that $\{2\}$ is open and closed in Y. Its complement [0, 1) is also open and closed in Y.

4. Show that if Y is a subspace of X and A is a subspace of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

Denote by \mathcal{T} the topology on A induced by the topology of X; denote by \mathcal{T}' the topology on A induced by the topology of Y. Then \mathcal{T} consists of the sets $U \cap A$ where $U \subset X$ is open and \mathcal{T}' consists of the sets $U' \cap A$ where $U' \subset Y$ is open. Each such U' has the form $U' = U \cap Y$ where $U \subset X$ is open. Then

$$U' \cap A = (U \cap Y) \cap A = U \cap (Y \cap A) = U \cap A.$$

Thus we see that $\mathcal{T} = \mathcal{T}'$.

5. Show that the set $A = \{(x,y); x \geq 0, y \geq 0\} \subset \mathbb{R}^2$ is closed.

If $(x,y) \notin A$ then either x < 0 or y < 0. The open ball B((x,y);r) is disjoint from A when $0 < r < \min\{|x|,|y|\}$. Thus the complement A^c is open and hence A is closed.

6. In the finite complement topology on a set X, the closed sets consist of X itself and all finite subsets of X.

It is obvious.

7. Consider the following subset $Y = [0,1] \cup (2,3)$ of the real line \mathbb{R} . Show that both sets [0,1] and (2,3) are open and closed in the subspace topology of Y.

This is similar to question (3).