1. Let X be a topological space; let A be a subspace of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

For $x \in A$ let $U_{x} \subset A$ denote an open subset containing x. Then $A=\cup_{x \in A} U_{x}$ is open as a union of open subsets.
2. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.
" U is open in Y " means that $U=V \cap Y$ where $V \subset X$ is open in X. If Y is open in X the the intersection $V \cap Y$ is open in X (as intersection of two open subsets). Hence, $U=V \cap Y$ is open in X.
3. Let Y be the subset $[0,1) \cup\{2\}$ of \mathbb{R}. Show that in the subspace topology on Y the single point $\{2\}$ is closed and open. Besides, show that the set $[0,1)$ is closed and open in Y.
The intersection $(1.5,2,5) \cap Y$ is $\{2\}$ and $[1.5,2,5] \cap Y=\{2\}$. This shows that $\{2\}$ is open and closed in Y. Its complement $[0,1)$ is also open and closed in Y.
4. Show that if Y is a subspace of X and A is a subspace of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

Denote by \mathcal{T} the topology on A induced by the topology of X; denote by \mathcal{T}^{\prime} the topology on A induced by the topology of Y. Then \mathcal{T} consists of the sets $U \cap A$ where $U \subset X$ is open and \mathcal{T}^{\prime} consists of the sets $U^{\prime} \cap A$ where $U^{\prime} \subset Y$ is open. Each such U^{\prime} has the form $U^{\prime}=U \cap Y$ where $U \subset X$ is open. Then

$$
U^{\prime} \cap A=(U \cap Y) \cap A=U \cap(Y \cap A)=U \cap A .
$$

Thus we see that $\mathcal{T}=\mathcal{T}^{\prime}$.
5. Show that the set $A=\{(x, y) ; x \geq 0, y \geq 0\} \subset \mathbb{R}^{2}$ is closed.

If $(x, y) \notin A$ then either $x<0$ or $y<0$. The open ball $B((x, y) ; r)$ is disjoint from A when $0<r<\min \{|x|,|y|\}$. Thus the complement A^{c} is open and hence A is closed.
6. In the finite complement topology on a set X, the closed sets consist of X itself and all finite subsets of X.

It is obvious.
7. Consider the following subset $Y=[0,1] \cup(2,3)$ of the real line \mathbb{R}. Show that both sets $[0,1]$ and $(2,3)$ are open and closed in the subspace topology of Y.
This is similar to question (3).

