MTH 4104 Example Sheet IV Solutions

IV-1.
$$X^5 = (X^2 + (1 + \sqrt{-1})X + \sqrt{-1})(X^3 + (-1 - \sqrt{-1})X^2 + \sqrt{-1}X) + X$$

IV-2. $X^2 - X \in \mathbb{Z}_6[X]$ has [0], [1], [3], [4] as solutions in \mathbb{Z}_6 .

 $IV-3. \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} 3a-2b & 4a-3b \\ 3c-2d & 4c-3d \end{pmatrix}. \text{ On the other hand, } \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3a+4c & 3b+4d \\ -2a-3c & -2b-3d \end{pmatrix}. \text{ Equating all entries, we get } a = -3c+d \text{ and } b = -2c \text{ while } c \text{ and } d \text{ are}$ arbitrary elements of \mathbb{R} . The matrices that commute with $\begin{pmatrix} 3 & 4 \\ -2 & -3d \end{pmatrix}$ are $\left\{ \begin{pmatrix} -3c+d & -2c \\ c & d \end{pmatrix} | c, d \in \mathbb{R} \right\}.$

IV-4. $M_n(R[X])$ is the set of *n*-by*n* matrices with entires polynomials in R[X], while $(M_n(R))[X]$ is the set of polynomials with coefficients in *n*-by-*n* matrices in $M_n(R)$. For example, $\begin{pmatrix} 1 & X-1 \\ -X & 1 \end{pmatrix}$ is an element of $M_2(\mathbb{Z}[X])$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is an element of $M_2(\mathbb{Z})[X]$.

IV-5. Check (AB)C = A(BC) by brute force.

$$IV-6. (R+0)\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} + \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} = \begin{pmatrix} a+p & b+q \\ 0 & d+r \end{pmatrix}. (R+1) \operatorname{Clear.} (R+2) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}. (R+3) \operatorname{The inverse of} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \operatorname{is} \begin{pmatrix} -a & -b \\ 0 & -c \end{pmatrix}. (R+4) \operatorname{Clear.} (R\times0) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} = \begin{pmatrix} ap & aq + br \\ 0 & cr \end{pmatrix}. (R\times1) \operatorname{Clear.} (R\times+) \operatorname{Clear.} (R+\times) \operatorname{Clear.}$$

IV-7. (a) There are three kinds of symmetries: the identity $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$, rotations with respect to the centre by $2\pi/5$, $4\pi/5$, $6\pi/5$, $8\pi/5$ (for example, the $4\pi/5$ rotation is $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}$) and reflections with to a line passing through a vertex and the midpoint of the opposite edge (for example, the reflection with respect to the vertex 1 is $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}$). The following are all:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \\ 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 5 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

(b) Yes.

IV-8. (a)
$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ are permutation matrices. Then

 $AB = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is again a permutation matrix. In fact, the set of all permutation matrices

in $M_n(\mathbb{R})$ define a group under multiplication (the identity matrix *is* the identity element) (b) The permutation matrices are in bijection with the permutations of $\{1, \ldots, n\}$. Given a permutation f in S_n , define the matrix M(f) by letting its (r, s)-entry to be 1 if r = f(s) and 0 otherwise. For example, if $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$, then M(f) = A above. The map $f \mapsto M(f)$ is a group homomorphism, in the sense that $M(f \circ g) = M(f)M(g)$, where composition in S_n is 'translated' into multiplication of permutation matrices in $M_n(\mathbb{R})$.

If we define a (permutation) matrix N(f) associated to f by letting its (r, s)-entry ro be 1 if f(r) = s and 0 otherwise, then N(f) turns out to be the transpose of M(f).