IV-1. $X^{5}=\left(X^{2}+(1+\sqrt{-1}) X+\sqrt{-1}\right)\left(X^{3}+(-1-\sqrt{-1}) X^{2}+\sqrt{-1} X\right)+X$.
IV-2. $X^{2}-X \in \mathbb{Z}_{6}[X]$ has [0], [1], [3], [4] as solutions in \mathbb{Z}_{6}.
IV-3. $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)=\left(\begin{array}{cc}3 a-2 b & 4 a-3 b \\ 3 c-2 d & 4 c-3 d\end{array}\right)$. On the other hand, $\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=$ $\left(\begin{array}{cc}3 a+4 c & 3 b+4 d \\ -2 a-3 c & -2 b-3 d\end{array}\right)$. Equating all entries, we get $a=-3 c+d$ and $b=-2 c$ while c and d are arbitrary elements of \mathbb{R}. The matrices that commute with $\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)$ are $\left\{\left.\left(\begin{array}{cc}-3 c+d & -2 c \\ c & d\end{array}\right) \right\rvert\, c, d \in \mathbb{R}\right\}$.

IV-4. $\mathrm{M}_{n}(R[X])$ is the set of n-by n matrices with entires polynomials in $R[X]$, while $\left(\mathrm{M}_{n}(R)\right)[X]$ is the set of polynomials with coefficients in n-by- n matrices in $\mathrm{M}_{n}(R)$. For example, $\left(\begin{array}{cc}1 & X-1 \\ -X & 1\end{array}\right)$ is an element of $\mathrm{M}_{2}(\mathbb{Z}[X])$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ is an element of $\mathrm{M}_{2}(\mathbb{Z})[X]$.

IV-5. Check $(A B) C=A(B C)$ by brute force.
IV-6. $(\mathrm{R}+0)\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)+\left(\begin{array}{cc}p & q \\ 0 & r\end{array}\right)=\left(\begin{array}{cc}a+p & b+q \\ 0 & d+r\end{array}\right) .(\mathrm{R}+1)$ Clear. $(\mathrm{R}+2)\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) .(\mathrm{R}+3)$ The inverse of $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ is $\left(\begin{array}{cc}-a & -b \\ 0 & -c\end{array}\right) .(\mathrm{R}+4)$ Clear. $(\mathrm{R} \times 0)$ $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{ll}p & q \\ 0 & r\end{array}\right)=\left(\begin{array}{cc}a p & a q+b r \\ 0 & c r\end{array}\right) .(\mathrm{R} \times 1)$ Clear. $(\mathrm{R} \times+)$ Clear. $(\mathrm{R}+\times)$ Clear.

IV-7. (a) There are three kinds of symmetries: the identity $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5\end{array}\right)$, rotations with respect to the centre by $2 \pi / 5,4 \pi / 5,6 \pi / 5,8 \pi / 5$ (for example, the $4 \pi / 5$ rotation is $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2\end{array}\right)$) and reflections with to a line passing through a vertex and the midpoint of the opposite edge (for example, the reflection with respect to the vertex 1 is $\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2\end{array}\right)$). The following are all:
(b) Yes.

IV-8. (a) $A=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$ are permutation matrices. Then
$A B=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ is again a permutation matrix. In fact, the set of all permutation matrices in $\mathrm{M}_{n}(\mathbb{R})$ define a group under multiplication (the identity matrix is the identity element) (b) The permutation matrices are in bijection with the permutations of $\{1, \ldots, n\}$. Given a permutation f in S_{n}, define the matrix $M(f)$ by letting its (r, s)-entry to be 1 if $r=f(s)$ and 0 otherwise. For example, if $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{array}\right)$, then $M(f)=A$ above. The map $f \mapsto M(f)$ is a group homomorphism, in the sense that $M(f \circ g)=M(f) M(g)$, where composition in S_{n} is 'translated' into multiplication of permutation matrices in $\mathrm{M}_{n}(\mathbb{R})$.

If we define a (permutation) matrix $N(f)$ associated to f by letting its (r, s)-entry ro be 1 if $f(r)=s$ and 0 otherwise, then $N(f)$ turns out to be the transpose of $M(f)$.

