3rd year pathway presentation at 17:00

Pecap quiz

$$max \quad C^{T} \stackrel{Z}{=}$$
Sub to $A \approx 5 \stackrel{b}{=}$
 $27 \stackrel{C}{=}$

		Prima	Dual
2)	Goal	max	
,	# Variables	N	
	# unrestricted variables	n'	
	# constraints	m	
	H equality constraints	m'	

3) Weak duality theorem says:

If z is a _____ to LP above and y is a _____ to its dual

then ____ > ___

Example of using complementary slackness

Example 9.1. Consider the linear program:

maximise
$$2x_1 - x_2 + 8x_3$$

subject to $2x_3 \le 1$
 $2x_1 - 4x_2 + 6x_3 \le 3$
 $-x_1 + 3x_2 + 4x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$ (9.5)

Show that $x_1 = 17/2$, $x_2 = 7/2$, $x_3 = 0$ is an optimal solution to this program.

Modelling Revisited (non-linear objective)

Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Out	tputs		Inputs		
Process	\overline{X}	\overline{Y}	Metal	Electricity	Labour	
1	4	0	100 kg	800 kWh	16 hrs	
2	0	1	70 kg	600 kWh	16 hrs	
3	3	1	120 kg	2000 kWh	50 hrs	
4	6	3	270 kg	4000 kWh	48 hrs	

Piecewise lineer concave/convex dojectives

Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Out	puts	Inputs		
Process	\overline{X}	\overline{Y}	Metal	Electricity	Labour
1	4	0	100 kg	800 kWh	16 hrs
2	0	1	70 kg	600 kWh	$16 \; \mathrm{hrs}$
3	3	1	120 kg	2000 kWh	50 hrs
4	6	3	270 kg	4000 kWh	48 hrs

limited resources: 6000 kg metal 100000 kwh electric 1000 hours labour

Revenue

Y sells for £1800 per unit X sells for £1000 per unit

As before Pi= # hows of process i

m,e,l = amount of wetal/electric/labour used

x,y = amount of X, y produced.

 $\begin{array}{ll} \text{maximise} & 1000x + 1800y \\ \\ \text{subject to} & x = 4p_1 + 3p_3 + 6p_4 \\ & y = p_2 + p_3 + 3p_4 \\ & m = 100p_1 + 70p_2 + 120p_3 + 270p_4 \\ & e = 800p_1 + 600p_2 + 2000p_3 + 4000p_4 \\ & l = 16p_1 + 16p_2 + 50p_3 + 48p_4 \\ & m \leq 6000 \\ & e \leq 100000 \\ & l \leq 1000 \\ & p_1, p_2, p_3, p_4 \geq 0 \\ & x, y \text{ unrestricted} \end{array}$

m, e, l unrestricted

Piecewise lineer concave/convex dojectives

Example 9.2. A factory makes 2 different parts (say, part X and part Y). Their plant has 4 separate processes in place: there are two older processes (say, process 1 and 2) that produce parts X and Y directly, as well as two different integrated processes for producing both X and Y simultaneously. The 4 processes can be run simultaneously, but require labour, raw metal, and electricity. The hourly inputs and outputs for each process are as follows:

	Out	puts	Inputs		
Process	\overline{X}	\overline{Y}	Metal	Electricity	Labour
1	4	0	100 kg	800 kWh	16 hrs
2	0	1	70 kg	600 kWh	16 hrs
3	3	1	120 kg	2000 kWh	50 hrs
4	6	3	270 kg	4000 kWh	48 hrs

limited resources: 6000 kg metal 100000 kwh electric 1000 hours labour

Revenue
Y sells for £1800 per unit
X sells for £1000 per unit first 30
£700 next 60
£400 remaining

$$\begin{array}{ll} \text{maximise} & 1000x + 1800y \\ \text{subject to} & x = 4p_1 + 3p_3 + 6p_4 \\ & y = p_2 + p_3 + 3p_4 \\ & m = 100p_1 + 70p_2 + 120p_3 + 270p_4 \\ & e = 800p_1 + 600p_2 + 2000p_3 + 4000p_4 \\ & l = 16p_1 + 16p_2 + 50p_3 + 48p_4 \\ & m \leq 6000 \\ & e \leq 100000 \\ & l \leq 1000 \\ & p_1, p_2, p_3, p_4 \geq 0 \\ & x, y \text{ unrestricted} \\ & m, e, l \text{ unrestricted} \\ \end{array}$$

Application: sensitivity analysis

sensitivity analysis. (Example from earlier)

Primal

maximise
$$2x_1 - x_2 + 8x_3$$

subject to $2x_3 \le 1$
 $2x_1 - 4x_2 + 6x_3 \le 3$
 $-x_1 + 3x_2 + 4x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

optimal solution
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 17/2 \\ 7/2 \\ 0 \end{pmatrix}$$

Dual

Minimike
$$y_1 + 3y_2 + 2y_3$$

sub to $0y_1 + 2y_2 - y_3 \geqslant 2$
 $0y_1 - 4y_2 + 3y_3 \geqslant -1$
 $2y_1 + 6y_2 + 4y_3 \geqslant 8$
 $y_1, y_2, y_3 \geqslant 0$.

optimal solution
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 5/2 \\ 3 \end{pmatrix}$$