

Last weak
Cr30 F: a field

$$
\alpha \in F
$$

Then the remainder of $f \in F|X|$ when divided by $x-\alpha$ is $f(\alpha)$
In puttienlor.

$$
\begin{array}{r}
f(\alpha)=0 \Leftrightarrow x-\alpha \text { trivilded } \\
\\
\\
f(x) .
\end{array}
$$

Example $F=\mathbb{F}_{7}=\{[0],[1]$,

$$
f(x)=x^{2}+3
$$

Claim

$$
\text { in } \mathbb{F}_{7}[x]
$$

$x-[2]$ divides $x^{2}+[3]$
Pf $\alpha=\{2\}$
Need to check that

$$
\begin{aligned}
f([21) & =[2]_{7}^{2}+[3]_{1} \quad[0]_{7} \\
& =[4]_{7}+[3]_{7}=[7]_{1}
\end{aligned}
$$

By Curolhay 301
$x-121$ divides

$$
f(x)=x^{2}+[3]
$$

similarly $x+[2]$ divides $x^{2}+\lceil 3\rceil$
In fact

$$
\begin{aligned}
& x^{2}+[3]=(x-[2])(x+[2]) \\
& {[3]=[-4]=-[4]} \\
& x^{2}+[3]=x^{2}-[14]
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}-[2]^{2} \\
& =(x+[2])(x-[22)
\end{aligned}
$$

Lets conskider $F=H_{5}$

$$
\{[0], \cdots,[4]\}
$$

$f(x)=x^{2}+2$ is itteduible, i.e.
mo non-trivial pilynomial in $H_{5}|\bar{x}|$ divides $f(x)$.

In this set-up1 this means that no polynomial id degree 1 divides $f|x|$
vie. $x^{2}+2$ is NoT of th form

$$
(x+[a))(x+(b))
$$

$[a],[b] \in \mathbb{F}_{5}$
To do this, we use Car 30.
By Cor 30, if $f(\alpha) \neq[0]$
for any $\alpha \in F_{5}$,
ten $f(x)$ is NuT divistblby $x-\alpha$ for any α.

α	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$
$f(\alpha)$	$[2]$	$[3]$	$[6]$	$[21]$	$[18]$
11		11	11		

$$
\alpha^{2}+2 \quad[1]_{5}^{11}[1]_{5}[3]
$$

Therefore $f(x)$ can nut be divided by a pulynomina of to form $x-\alpha$

Theorem 31 (The funcamentel therem of Alcgota)

$$
\begin{align*}
& \text { If } f=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x \\
& c_{n} \neq 0 \quad c_{i} \in \mathbb{C} \tag{0}
\end{align*}
$$

then f has a rout in \mathbb{C},

$$
\text { ic. } \exists \alpha \in \mathbb{C} \text { s.t. } f(\alpha)=0
$$

Therrem 32 f as chove

Then throne exist $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$

$$
f(x)=C_{n}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

gil $f\left(\alpha_{i}\right)=0 \quad 1 \leq i \leq n$.
Re some of the di's might be equal.

PI "Complex Gunhysis'"
Recall that $x^{2}+1$ clos not have a root in $\mathbb{Q}[x]$
bat it has a root in © (XX

Deft we say that a polynomial

$$
\begin{gathered}
f(x)=C_{n} x^{n}+C_{n-1} X^{n-1}+\cdots+C_{0} \\
\in F|x|
\end{gathered}
$$

is manic is to lensing coefficut

$$
C_{n} \text { is } 1=1_{F}
$$

(the identity writ.

$$
x \text { in }\left(F_{1}, H_{1}\right)
$$

Re The zero polynmind is defines to be monic
Re The cegree 0 monic pelynomical

$$
\text { is } 1
$$

(NOI any cefremt $C \in F^{x}$)
Det F : a field

$$
\text { (e.s. } \begin{aligned}
F & =\mathbb{Q} \\
& =\mathbb{F}_{p} \\
& =\mathbb{C} \mid
\end{aligned}
$$

Given $f, g \in F(x)$, te ged of $f 89$ is a polynomial $h \in F(x)$

- h divines f \& h divides g
- if h^{\prime} is a polynomial in $F[X)$ that divides both f and g ten h^{\prime} divides h
- h is manic
(R2 Without $)$ this curation h that satisfies to first two
and ch can both be gets of $\left.c \in F^{x}=F-50\right)$.
RE Recall $a, b \in \mathbb{Z}$ the ged of a sb is defined to be an integer $g \in \mathbb{Z}$
- 5 diuvikes 9 \& drúks b
- if y^{\prime} divíces a and b, then g^{\prime} diưkes 9
- $\quad 9 \geq 0$

Therem 33 Let $f_{1} g \in F(x)$

- There is a ged if fand
in $F(x)$
- The ged of fond g can be computed by Euclid's algorithm.
(based on Throes 28)
- There exist P and q in $F|x|$

$$
f \cdot p+g \cdot q=g d(f, g)
$$

(as in Bezant's identity in Weak 1).
Tharam 28 $\quad f \in F|x|$

$$
g \neq 0
$$

$$
\frac{f=g \cdot q+r}{\text { for some } q \cdot r \in F|x|}
$$

whee $r=0$

$$
{ }^{\circ} \operatorname{deg}(t)<\operatorname{deg}(g)
$$

$$
\begin{aligned}
& \text { Exam) } \begin{aligned}
& f(x)= x^{4}+2 x^{3}+x^{2}-4 \\
& 5(x)=x^{3}-1 \text { in } Q|x| \\
& \text { - } x^{4}+2 x^{3}+x^{2}-4=\left(x^{3}-1\right)(x+2) \\
&+x^{2}+x-2
\end{aligned}
\end{aligned}
$$

- $x^{3}-1=\underset{\sim}{(x-1)}\left(x^{2}+x-2\right)+\underset{(2 x-3)}{r}$
- $x^{2}+x-2=\frac{1}{3}(x+2)(3 x-3)+0$
$\Rightarrow 3 x-3$ is a commen diúsor.
Since this is nut monic, He $\operatorname{gcd}(f ; s)=x-1$

Evercie, Find $p, q \in Q(x)$
s.t.

$$
\begin{aligned}
& \left(x^{4}+2 x^{3}+x^{2}-4\right) \cdot p \\
& \quad+\left(x^{3}-1\right) \cdot q=x-1
\end{aligned}
$$

From to seeard liwo if $E . A_{\xi}$

$$
3 x-3=\left(x^{3}-1\right)-(x-1)\left(x^{2}+x-2\right)
$$

Sunstituning te relation

$$
x^{2}+x-2=f(x)-(x+2 \mid g(x)
$$

from te 1st lical into

$$
\begin{aligned}
& =-(x-1) f|x|+(1+(x-1) \mid x+2)) \\
& g|x| \\
& =-(x-1) f(x)+\left(x^{2}-x-1\right) g(x)
\end{aligned}
$$

Thenture

$$
x-1=-\frac{1}{3}(x-1) f(x)
$$

$$
+\frac{1}{3}\left(x^{2}-x-1\right) g(x)
$$

Examle

$$
\begin{aligned}
& f(x)=x^{4}+1 \\
& g(x)=x^{2}+x
\end{aligned}
$$

in $\mathbb{F}_{2}(x)$

$$
\mathbb{F}_{2}=\{[0],[1]\}
$$

$$
\left\{\begin{array}{l}
\mathrm{N}_{2}[1]+[1]=[2]=[0] \\
\text { and gali... }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Instead of } x^{4}+1 \text {, } \\
& \text { use }(x+1)^{4} \\
& \text { because }(x+1)^{4}=x^{4}+\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right) x^{3}+\left(\begin{array}{l}
4 \\
4 \\
2
\end{array}\right)^{2} \\
& \left.=x^{4}+141 x^{3}+16\right) x^{2} \\
& +\left(\begin{array}{l}
4 \\
3 \\
4
\end{array}\right) x+1 \\
& +[47 x+\lceil 1\rceil \\
& =x^{4}+[1] \text { because }[4]_{2}=[0]_{2} \\
& T 6 T_{2}=[0]_{2}
\end{aligned}
$$

- $(x+1)^{4}=\overbrace{\sim_{1}}^{\left(\begin{array}{c}(x+1)^{2} \\ + \\ (x+1)+1\end{array}\right)}\left(x^{2}+x\right)+\underbrace{x+1}_{r}$

$$
x^{2}+x=x(x+1)+0
$$

$\Rightarrow x+1$ is the ged
Funtwronore,

$$
\begin{aligned}
x+1= & 1 \cdot(x+1)^{4} \\
& -\left((x+1)^{2}+(x+1)+1\right)\left(x^{2}+x^{x}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x)=x^{4}+1 \\
& 5(x)=x^{2}+x \quad \text { in } Q[x]
\end{aligned}
$$

what is red? What are "ps

- $\overbrace{f}^{x^{4}}+1=\underbrace{\left(x^{2}-x+1\right)}_{q}(\underbrace{\left(x^{2}+x\right)}_{g}+\underbrace{(-x+1)}_{r}$
- $x^{2}+x=(-x-2)(-x+1)+2$
- $-x+1=\frac{1}{2}(-x+1) 2+0$

Sine 2 is Nos monica, tho ged is 1 .

$$
2=\left(x^{2}+x\right)-(-x-2)(-x+1)
$$

Shustivich

$$
\begin{aligned}
-x+1 & \left.=\mid x^{4}+1\right) \\
& -\left(x^{2}-x+1\right)\left(x^{2}+x\right)
\end{aligned}
$$

$$
\begin{array}{r}
=(x+2) f(x)+1-x^{3}-x^{2}+x \\
-1) g(x)
\end{array}
$$

Thertare

$$
\begin{array}{r}
1=\operatorname{gcd}(f, g) \\
=(x+2) f+\left(-x^{3}-x^{2}+x\right. \\
-1) 9
\end{array}
$$

