
RELATIVITY – MTH6132

PROBLEM SET 9

1. Riemannian manifolds for which the Ricci tensor is proportional to the metric
tensor, Rab = λgab are called Einstein manifolds.

(a) Show that in the case of of an n-dimensional Einstein manifold, we necessarily
have λ = R/n, that is,

Rab =
R

n
gab.

(b) Use the Bianchi identity to prove that for dimensions n ≥ 3, Einstein manifolds
necessarily have constant scalar curvature.

2. Let (M, g) be a manifold with metric.

(a) The Laplace operator on M is defiend by

△f = div(grad(f)) = ∇a∇af .

Show that this is equivalent to

△f =
1√
|g|

∑
i,j

∂i

(
gij

√
|g|∂jf

)
,

where |g| = det g if g is Riemannian and − det g if g is Lorentzian.

(b) Let f be a spherically symmetric function on Rn, i.e., let f be a function on Rn

which depends only on r = |x|. Show that the Euclidean Laplacian satisfies

△f =
∂2f

∂r2
+

n− 1

r

∂f

∂r
.

Use this to find all spherically symmetric solutions of Laplace’s Equation

△f = 0 .

3. Let V = V a be a Killing vector field, i.e.,

∇(aVb) = 0 .

Show that
∇a∇bV

c = Rc
bad V

d .

4. Consider the general static spherically symmetric spacetime in four dimensions:

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2(dθ2 + sin2 θ dϕ2)

Compute the Christoffel symbols.

5. Consider the metric of Problem 4 above. Compute:



(a) The components of the Riemann tensor.

(b) The components of the Ricci tensor.

6. This problem has two parts:

(a) Show that in the presence of a negative cosmological constant Λ = − 3
L2 , the

Einstein equations
Gab + Λgab = 0 ,

reduce to

Rab +
3

L2
gab = 0 .

(b) Using the spherically symmetric ansatz for the metric as in Problem 4 and the
results in Problem 5, solve the Einstein equations with negative cosmological
constant that you have derived in Part (a) to find the Schwarzschild-anti de
Sitter spacetime.

7. Consider the Schwarzschild metric, given in local coordinates (t, r, θ, ϕ) by

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2
(
dθ2 + sin2 θdϕ2

)
.

where we have set G = 1 (together with c = 1, these are called geometric units).

(a) Using any method, verify that the Kretschman scalar K is given by

K = RabcdR
abcd =

48M2

r6
.

What does this calculation demonstrate?

(b) Introduce a new coordinate r∗, called the tortoise coordinate, as

r∗ = r + 2M ln
( r

2M
− 1

)
.

Defining the ingoing null geodesics (light rays) by v = t + r∗ and the outgoing
null geodesics by u = t − r∗, rewrite the Schwarzschild metric in Eddington-
Finkelstein form as

ds2 = −
(
1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2).

(c) Using the Eddington-Finkelstein form above, consider radial light rays (dθ =
dϕ = 0 and ds2 = 0) to obtain

dv

dr
=

2

1− 2M/r
.

Integrate to express v as a function of r. This describes the paths followed
by radial light rays in the (r, v) coordinates. Describe the behaviour of light
cones by graphing light cones in the (r, v) plane. You will need to consider two
regions: r > 2M and r < 2M .



8. Consider the line element

ds2 =

(
1− 2GM

r
+

GP 2

r2

)
dt2 +

(
1− 2GM

r
+

GP 2

r2

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) ,

where M and P are constants satisfying M > P > 0.

1. Find the expressions for the conserved energy E and angular momentum L
along the geodesics associated to the Killing vectors ∂

∂t
and ∂

∂ϕ
respectively.

2. Find the effective potential V (r) that governs the radial motion of the geodesics:

1

2

(
dr

dλ

)2

+ V (r) = E ,

where λ is the affine parameter along the geodesics and E = 1
2
E2 is defined in

the lecture notes.

3. Sketch V (r) for the null geodesics. You should assume L > 0.

4. Does this spacetime have any horizon(s)? If so, write down the spacetime
metric above in ingoing Eddington-Finkelstein coordinates that are smooth at
the horizon(s).

9. Consider the following spacetime,

ds2 = −
(
r2

ℓ2
− r20

r2

)
dt2 +

(
r2

ℓ2
− r20

r2

)−1

dr2 + r2(dx2 + dy2 + dz2) , (1)

where ℓ and r0 are real and positive constants.

1. Show that the conserved quantities along the geodesics are given by:

E =

(
r2

ℓ2
− r20

r2

)
ṫ , kx = r2 ẋ , ky = r2 ẏ , kz = r2 ż ,

where ẋ = dx
dτ
, etc., and τ is the proper time in the case of timelike geodesics,

or an affine parameter in the case of null geodesics.

2. By reducing the radial motion of the timelike geodesics to an equation of the
form,

1
2
ṙ2 + V (r) = E ,

identify the effective potential V (r). Sketch V (r) and discuss the possible tra-
jectories for massive particles.

3. Consider a freely falling massive particle in the spacetime (1) moving in the ra-

dial direction from a point r = r∗ > 0 with energy E such that E2−
(

r2∗
ℓ2
− r20

r2∗

)
>

0. Calculate the proper time that it takes for such a particle to reach r = 0.

Hint: you may use, without proof, that∫
dr

1√
a2 − b2r2 + c2

r2

= − 1

2b
arctan

(
a2 − 2b2r2

2b
√
c2 + a2r2 − b2r4

)
,

where a, b, c are real and positive constants.



10. Consider the following spacetime

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2 , (2)

where pi, i = 1, . . . , 3 are real constants. You may assume t > 0.

1. By direct computation or otherwise, show that the only non-vanishing Christof-
fel symbols of the metric (2) are

Γt
xx = p1 t

−1+2p1 , Γt
yy = p2 t

−1+2p2 , Γt
zz = p3 t

−1+2p3 ,

Γx
tx =

p1
t
, Γy

ty =
p2
t
, Γz

tz =
p3
t
,

and those related to the above by the symmetries of the Christoffel symbols.

2. Compute the non-vanishing components of the Ricci tensor. (Hint: by the
form of the line element in (2), only the tt, xx, yy and zz components of
the Ricci tensor are different from zero. Recall that Γa

ab = ∂b ln
√

|g|, where
|g| = | det gab|.)

3. Find the conditions that the pi’s must satisfy so that the metric in (2) solves
the Einstein vacuum equations, Rab = 0.

11. Consider the following spacetime:

ds2 = −
(
1− r2

ℓ2

)
dt2 +

dr2

1− r2

ℓ2

+ r2(dθ2 + sin2 θ dϕ2) ,

where ℓ > 0 is a constant.

1. Let u = t−ℓ tanh−1(r/ℓ) for r ≤ ℓ. Use the coordinates (u, r, θ, ϕ) to show that
the surface of r = ℓ is non-singular. (Hint: Recall that d

dx
tanh−1(x) = 1

1−x2 .)

2. Show that the vector field gab∂bu is null.

3. Show that the radial null geodesics obey either

du

dr
= 0 or

du

dr
= − 2

1− r2

ℓ2

.

For r < ℓ, which of these families of geodesics is outgoing, i.e., dr
dt

= ṙ
ṫ
> 0, where

the dot ˙ denotes the derivative with respect to the affine parameter along the
geodesics? Sketch the radial null geodesics in the (u, r) plane for 0 ≤ r ≤ ℓ,
where the r-axis is horizontal and the lines of constant u are inclined at 45◦

with respect to the horizontal.


