$$
\text { WEEK } 9
$$

Previons lecture
Einstein equations: $G_{a b}=8 \pi G T_{a b}$

- In vacuum : $T_{a b}=0 \Rightarrow R_{a b}=0$
- Spheically symmmetric and static spacetime

$$
d s^{2}=-e^{2 A(r)} d t^{2}+e^{2 B(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Solve the Einstein racuem eqs
- Step_1: Compute $\Gamma_{b c}^{a} \rightarrow$ une Eulu-Lagrange eys fo the geocesics

$$
\begin{aligned}
& L=g_{a b} \dot{x}^{a} \dot{x}^{b}=-e^{2 A(r)} \dot{t}^{2}+e^{2 \theta(r)} \dot{r}^{2}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) \\
& \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0 \Leftrightarrow \ddot{x}^{a}+\Gamma_{b c}^{a} \dot{x}^{b} \dot{x}^{c}=0
\end{aligned}
$$

Step 2: compute the Ricci tensor

$$
\begin{aligned}
& R_{a b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \partial_{b} \ln \sqrt{|g|}+\Gamma_{a b}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{a d}^{c} \Gamma_{b c}^{d} \\
& \operatorname{det} g=-e^{2(A+B)} r^{4} \sin ^{2} \theta \rightarrow \sqrt{|g|}=e^{A+B} r^{2} \sin \theta \\
& \rightarrow \ln \sqrt{|g|}=A+B+2 \ln r+\ln \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
R_{t t}= & \partial_{c} \Gamma_{t t}^{c}-\partial^{2} \ln \sqrt{| | g \mid}+\Gamma_{t t}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{t d}^{c} \Gamma_{t c}^{d} \\
= & \partial_{r} \Gamma_{t t}^{r}+\Gamma_{t t}^{r} \partial_{r} \ln \sqrt{|g|}-\Gamma_{t r}^{t} \Gamma_{t t}^{r}-\Gamma_{t t}^{r} \Gamma_{t r}^{t} \\
= & \frac{d}{d r}\left(e^{2(A-B)} A^{\prime}\right)+e^{2(A-B)} A^{\prime}\left(A^{\prime}+B^{\prime}+\frac{2}{r}\right) \\
& -2\left(A^{\prime}\right)^{2} e^{2(A-B)} \\
= & e^{2(A-B)}\left[A^{\prime \prime}+A^{\prime}\left(A^{\prime}-B^{\prime}+\frac{2}{r}\right)\right]
\end{aligned}
$$

$$
\text { - } \begin{aligned}
R_{r r}= & \partial_{c} \Gamma_{r r}^{c}-\partial_{r}^{2} \ln \sqrt{|g|}+\Gamma_{r r}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{r d}^{c} \Gamma_{r c}^{d} \\
= & \partial_{r} \Gamma_{r r}^{r}+\partial_{r}^{2} \ln \sqrt{|g|}+\Gamma_{r r}^{r} \partial_{r} \ln \sqrt{|g|} \\
& -\Gamma_{r t}^{t} \Gamma_{r t}^{t}-\Gamma_{r r}^{r} \Gamma_{r r}^{r}-\Gamma_{r \theta}^{\theta} \Gamma_{r \theta}^{\theta}-\Gamma_{r \phi}^{\phi} \Gamma_{r \phi}^{\phi} \\
= & B^{\prime \prime}-\left(A^{\prime \prime}+B^{\prime \prime}-\frac{2}{r^{2}}\right)+B^{\prime}\left(A^{\prime}+B^{\prime}+\frac{2}{r}\right) \\
& -\left(A^{\prime}\right)^{2}-\left(B^{\prime}\right)^{2}-\frac{2}{r^{2}} \\
= & -A^{\prime \prime}-\left(A^{\prime}\right)^{2}+A^{\prime} B^{\prime}+\frac{2}{r} B^{\prime}
\end{aligned}
$$

Similarly we compute

$$
R_{\theta \theta}=e^{-2 B}\left[r\left(B^{\prime}-A^{\prime}\right)-1\right]+1
$$

$R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta} \quad$ by spherical symmenctry.
Step 3: Solve the Einstein equations $R_{a b}=0$

$$
\begin{aligned}
& R_{t t}=e^{2(A-B)}\left(A^{\prime \prime}+A^{\prime 2}-A^{\prime} B^{\prime}+\frac{2}{r} A^{\prime}\right) \\
& R_{r r}=-A^{\prime \prime}-A^{\prime 2}+A^{\prime} B^{\prime}+\frac{2}{r} B^{\prime} \\
& R_{\theta \theta}=e^{-2 B}\left[r\left(B^{\prime}-A^{\prime}\right)-1\right]+1
\end{aligned}
$$

Since all components of Rice have to ramish independently we can consider linear combinations:

$$
\begin{aligned}
& 0=e^{2(B-A)} R_{t t}+R_{r r}=\frac{2}{r}\left(A^{\prime}+B^{\prime}\right) \\
& \Rightarrow A(r)=-B(r)+c, C=\text { cont }
\end{aligned}
$$

We can set $c=0$ by rescaling $t \rightarrow e^{-c} t$ so

$$
\begin{aligned}
& A(r)=-B(r) \\
0= & R_{\theta \theta}=e^{2 A(r)}\left(-2 r A^{\prime}-1\right)+1 \\
\Rightarrow & e^{2 A(r)}\left(2 r A^{\prime}+1\right)=1 \\
\Rightarrow & \frac{d}{d r}\left(r e^{2 A(r)}\right)=1 \Rightarrow e^{2 A(r)}=1-\frac{R_{S}}{r}
\end{aligned}
$$

Rs: constant

With those susults the line element becomes:

$$
d s^{2}=-\left(1-\frac{R_{s}}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{R_{s}}{r}}+r^{2} d \Omega_{(2)}^{2}
$$

We can fix Rs ty requiring that in the weak field regime, $r \gg R_{s}$, we recover the pervious results:

$$
\begin{aligned}
& g_{t t}=-\left(1-\frac{R_{s}}{r}\right)=-(1+2 \phi)=-\left(1-\frac{2 G M}{r}\right) \\
& \Rightarrow R_{s}=2 G M
\end{aligned}
$$

We can finally write down the final form of a static, spherically symmetric vacuum spacetime:

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{r}}+r^{2} d \Omega_{(2)}^{2}
$$

\rightarrow Schuarsschild metric
M: mass of the spaccione. For $M \rightarrow 0$ we re cove Minkewstei space

- This spacetime describes the exterior of a stan. It all describes a blade hole
- Birkhoff's Thm: a spherically symmetric solution of the Einstein eqs in vacuum is meassarily static.

Singulanitros
The metric wefficients in the Sch. spactione become O on infinity at $r=0$ and $r=2 G M$, which suggests that something wrong may be going on the As we shall see $r=2 \mathrm{om}$ is a coondinate singularity, meaning that the wondinates becakdown the. This is similar to $r=0$ in flat space in polar coondinatios: $d s^{2}=d r^{2}+r^{2} d \theta^{2}$
$\rightarrow g_{\theta \theta}=0$ and $g^{\theta \theta}=\infty$ @ $r=0$. But them is nothing wrong at $r=0$: this point is equivalent to any other point and we can find coondinates, e.g., Cartesian $x=r \cos \theta, y=r \sin \theta \rightarrow d s^{2}=d x^{2}+d y^{2}$ sit. the metric and its inverse ane perfectly smooth at $x=y=0 \quad(\rightarrow r=0)$.
The singularity at $r=0$ is of a different mature because curvature salons, which as such one coondinate invariant, blow up at $r=0$. This shows that $r=0$ is a physical singularity since
spaulime curvature becomes infinite thus. To see this one can compute the no called Kretschamanm scalar:

$$
R_{a b c d} R^{a b a l}=\frac{48 G^{2} M^{2}}{r^{6}}
$$

Rabid $R^{\text {abed }} \rightarrow \infty$ at $r=0$. On the other hand this invariant is perfectly smooth and finite at $r=26 M$
-Symmetries and Killing velons.
Suppose that a given metric is independent of a coondinate $x^{c x}: \partial_{c^{*}} g_{a b}=0 \Rightarrow x^{c *} \rightarrow x^{c+}+a^{c *}$ is a symmetry. Thou type of symmetries have a direct consequence for the motion of tat particles in gab, which follow geodesics.
Consider the geodaic equation written in tens of the 4 -momenturn of the tat paulicle: $p^{a}=m U^{a}=m \dot{x}^{a}$

$$
\begin{array}{r}
\rightarrow p^{a} \nabla_{a} p^{b}=0 \Rightarrow p^{a} \nabla_{a} p_{b}=0 \\
\Rightarrow p^{a} \partial_{a} p_{b}-\Gamma_{a b}^{c} p^{a} p_{c}=0
\end{array}
$$

$$
\begin{aligned}
p^{a} \partial_{a} p_{b} & =m \frac{d x^{a}}{d \tau} \partial_{a} p_{b}=m \frac{d}{d \tau} p_{b} \\
\Gamma_{a b}^{c} p^{a} p_{c} & =\frac{1}{2} g^{c d}\left(\partial_{a} g_{b d}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right) p^{a} p_{c} \\
& =\frac{1}{2}\left(\partial_{a} g_{b d}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right) p^{a} p^{d} \\
& =\frac{1}{2}\left(\partial_{b} g_{a d}\right) p^{a} p^{d} \\
\Rightarrow m \frac{d}{d \tau} p_{b} & =\frac{1}{2}\left(\partial_{b} g_{a d}\right) p^{a} p^{d}
\end{aligned}
$$

\rightarrow If gab is independent of $x^{* *}$ the $P_{c x}$ is consewad along the geodesic:

$$
\partial_{c \times} g_{a b}=0 \Rightarrow \frac{d}{d \tau} p_{\alpha}=0 \Rightarrow P_{c x}=\text { const. }
$$

Considn the vector $K=\partial_{c *}$ associated to the coordinate $x^{e *}$ that $g_{a b}$ is independent of.
In components, $K^{a}=\left(\partial_{c^{*}}\right)^{a}=\delta_{c^{*}}$
We say that K^{a} generates a symmetry; this means that the transformation under which the geometry is invecicant is apposed as a motion in the direction of K^{a}. We have

$$
P_{a x}=K^{a} P_{a}=K_{a} P^{a}
$$

On the othn hand,

$$
\begin{aligned}
& \frac{d}{d \tau} p_{a}=0 \quad 0 \quad \text { by geodesic equal } \\
& \Rightarrow 0=p^{a} \nabla_{a}\left(K_{b} p^{b}\right)=p^{a} K_{b} \nabla_{a} p^{b}+p^{a} p^{b} \nabla_{a} K_{b} \\
&=p^{a} p^{b} \nabla_{(a} K_{b)}
\end{aligned}
$$

So, if a vector K^{a} satisfies $\nabla_{(a} K_{b)}=0$ them $K_{b} P^{b}$ is consewed along the geodesics:

$$
p^{a} \nabla_{a}\left(K_{b} p^{b}\right)=0
$$

\rightarrow a vector K^{a} that satisfies $\nabla_{(a} K_{b)}=0$ is called "Killing vector".
\rightarrow We have sam how this wonks for translations bat it is more geneal

- Geodesic of Schwargschild

The clanical experimental tests of GR (ie, before LiNo) are based on the trajcetovis of freely falling particles (the planacts) and light rays in the gravitational field of a central body (the Sun) \rightarrow timeline and null goolesis

$$
L=g_{a b} \dot{x}^{a} \dot{x}^{b}=-\left(1-\frac{2 M}{r}\right) \dot{t}^{2}+\frac{\dot{r}^{2}}{1-\frac{2 M}{r}}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)
$$

$L=-1$ for timelila geoclesics and $L=0$ for null gears.
Eulen-Lagnange eqs: $\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0$

$$
\begin{aligned}
& a=t: \ddot{t}+\frac{2 M}{r(r-2 M)} \dot{t} \dot{r}=0 \\
& a=r: \ddot{r}+\frac{M}{r^{3}}(r-2 M) \dot{t}^{2}-\frac{M}{r(r-2 M)} \dot{r}^{2}-(r-2 M)\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)=0 \\
& a=\theta: \ddot{\theta}+\frac{2}{r} \dot{\theta} \dot{r}-\sin \theta \cos \theta \dot{\phi}^{2}=0 \\
& a=\phi: \ddot{\phi}+\frac{2}{r} \dot{\phi} \dot{r}+2 \cot \theta \dot{\theta} \dot{\phi}=0
\end{aligned}
$$

- Because the soho. spaulime is spherically symmetric then is no loss of generality in restricting the motion to the equatorial plane and so we choose

$$
\theta=\frac{\pi}{2}
$$

- Since gab is indepanlent of t then $\left(\partial_{t}\right)_{a} \dot{x}^{a}$ is constant along the geodesics \rightarrow consecration of the enngy.

$$
\frac{\partial L}{\partial t}=0 \Rightarrow \frac{\partial L}{\partial \dot{t}}=\text { const }
$$

equivalent to $T^{a}=\left(\partial_{t}\right)^{a} \Rightarrow T_{a}=g_{a b}\left(\partial_{t}\right)^{b}=-\left(1-\frac{2 M}{r}\right)(d t)_{a}$

$$
\Rightarrow T_{a} \dot{x}^{a}=-\left(1-\frac{2 M}{r}\right) \dot{t}=-E=\text { const }
$$

- gab is independent of $\phi \Rightarrow\left(\partial_{\phi}\right)_{a} \dot{x}^{a}=$ const \rightarrow conservation of the angular momentum
Equivalent to: $\frac{\partial L}{\partial \dot{\phi}}=0 \Rightarrow \frac{\partial L}{\partial \dot{\phi}}=$ cons

$$
\begin{aligned}
& R^{a}=\left(\partial_{\phi}\right)^{a} \rightarrow R_{a}=g_{a b} R^{b}=g_{a b}\left(\partial_{p}\right)^{b}=g_{a p}{ }^{6} r^{2}(d \phi)_{a} \\
\Rightarrow & R_{a} \dot{x}^{a}=r^{2} \dot{\phi}=L=\text { const }
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
& \dot{t}=\frac{E}{1-2 M / r}, \quad \dot{\phi}=\frac{L}{r^{2}} \\
\Rightarrow & L=-\frac{E^{2}}{1-2 M / r}+\frac{\dot{r}^{2}}{1-2 M / r}+\frac{L^{2}}{r^{2}}=-\varepsilon \tag{*}
\end{align*}
$$

with $\varepsilon=1,0,-1$ for himelike, mull mol spacelke gealesis.
Multiply (*) by $\frac{1}{2}\left(1-\frac{2 M}{r}\right)$ to get

$$
\begin{aligned}
& \frac{1}{2} \dot{r}^{2}+V(r)=\varepsilon \\
& V(r)=\frac{1}{2}\left(1-\frac{2 M}{r}\right)\left(\frac{L^{2}}{r^{2}}+\varepsilon\right)=\frac{1}{2} \varepsilon-\frac{\varepsilon M}{r}+\frac{L^{2}}{2 r^{2}}-\frac{M L^{2}}{r^{3}} \\
& \varepsilon=\frac{1}{2} E
\end{aligned}
$$

(**) is the equation of motion for a classical particle of unit mass moving in a potential V(r) with annoy ε.
We want to get the full trajectory $r(\lambda), t(\lambda), \phi(\lambda)$ but understanding the radial motion provides very good intuition about the passible trajatorics.

- $V(r)$ is called "effective potential".
- In Necutonian gravity one gets a similar equation for the andial motion but with a clifferent $V(r)$: the last tam $\left(\sim 1 / r^{3}\right)$ is missing, which implies that the motion fo small r is different.
The possible orbits can be obtained by comparing ε to $V(r)$ for different values of L
- Null geodesics: $V(r)=\frac{1}{2}\left(1-\frac{2 M}{r}\right) \frac{L^{2}}{r^{2}}=\frac{L^{2}}{2 r^{2}}-\frac{M L^{2}}{r^{3}}$

To find $V_{\text {max }}$,

$$
V^{\prime}(r)=0 \quad \Rightarrow \quad-L^{2} r_{c}^{2}+3 M L^{2}=0 \Rightarrow r_{c}=3 M
$$

Since $\dot{r}=0 \rightarrow$ the radius is constant so this conespoonds to an (unstable) circular orbit.

Manive particles:

$$
V(r)=\frac{1}{2}\left(1-\frac{2 M}{r}\right)\left(\frac{L^{2}}{r^{2}}+1\right)=\frac{1}{2}-\frac{M}{r}+\frac{L^{2}}{2 r^{2}}-\frac{M L^{2}}{r^{3}}
$$

\rightarrow The shape of $V(r)$ depends on L : extreena only exist for $L>\sqrt{12} M$

$$
V^{\prime}\left(r_{c}\right)=0 \Rightarrow r_{c}=\frac{L^{2} \pm \sqrt{L^{4}-12 M^{2} L^{2}}}{2 M}
$$

\Rightarrow For $L>\sqrt{12} M$ thee aust two cinculas orbits
and for $L<\sqrt{2} M$ the ane no cincular orbila

- Fall to $r=0$ fa all E
- Fall to $r=0$
- Gencular orbits at r_{c} : unstable and stable
- Hyperbolic onbitz
- Closed onbits (ellipses)

For $L=\sqrt{12} M$ the two inculan orbits come together at $r_{c}=6 M$ and they chsappeas for $L<\sqrt{12} M$. $S_{0} r_{c}=6 M$ is the smallest possible radius on a stable cinculan orbit for a massive particle in Sch. So in Schw. Here
are state cinculon onbits for $r>6 M$ and unstable cinculon onbits for $3 M<r<6 M$. This is for free particles. Accelerating particles cam chip below $r=3 M$ and exape to infinity as long as they clon't get below $r=2 \mathrm{M}$.

- Contrast with Newtonian potential

$$
V(r)=\frac{1}{2}-\frac{M}{r}+\frac{L^{2}}{2 r^{2}}
$$

\rightarrow It's impossible to reach $r=0$!

- Expuimental tats of GR
- Puihclion mecession
- Perihelion: point of closest approach to the centre of an ellipse

\rightarrow Want to calculate $r(\phi)$ for closed orbits of maxine particles

Consider the radial motion of a manive particle in Sch:

$$
\begin{align*}
& \frac{1}{2} \dot{r}^{2}+V(r)=\xi \quad(*) \tag{*}\\
& V(r)=\frac{1}{2}\left(1-\frac{2 M}{r}\right)\left(\frac{L^{2}}{r^{2}}+1\right)=\frac{1}{2}-\frac{M}{r}+\frac{L^{2}}{2 r^{2}}-\frac{M L^{2}}{r^{3}} \\
& \xi=\frac{1}{2} E
\end{align*}
$$

Oho, recall that $r^{2} \dot{\phi}=L \Rightarrow \frac{1}{\dot{\phi}^{2}}=\frac{r^{4}}{L^{2}}$
To get an equation fer $\frac{d r}{d \phi}$, consider

$$
\frac{d r}{d \phi}=\frac{d \tau}{d \phi} \frac{d r}{d \tau}=\frac{\dot{r}}{\dot{\phi}} \Rightarrow\left(\frac{d r}{d \phi}\right)^{2}=\frac{\dot{r}^{2}}{\dot{\phi}^{2}}
$$

Multiplying (*) by $\frac{1}{\dot{\phi}^{2}}=\frac{r^{4}}{L^{2}}$

$$
\left(\frac{d r}{d \phi}\right)^{2}+\frac{r^{4}}{L^{2}}-\frac{2 M}{L^{2}} r^{3}+r^{2}-2 M r=\frac{2 \varepsilon}{L^{2}} r^{4}
$$

Define the now cimansionless radial rasiable

$$
\begin{aligned}
& u=\frac{L^{2}}{M r} \rightarrow \frac{d u}{d \phi}=-\frac{L^{2}}{M r^{2}} \frac{d r}{d \phi}=-\frac{u^{2} M}{L^{2}} \frac{d r}{d \phi} \\
& \rightarrow \frac{d r}{d \phi}=-\frac{L^{2}}{M u^{2}} \frac{d u}{d \phi} \\
& \frac{L^{4}}{M^{2} u^{4}}\left(\frac{d u}{d \phi}\right)^{2}+\frac{L^{6}}{M^{4} u^{4}}-\frac{2 L^{4}}{M^{2} u^{3}}+\frac{L^{4}}{M^{2} u^{2}}-\frac{2 L^{2}}{u}=\frac{2 \xi L^{6}}{M^{4} u^{2}} \\
& \left(\frac{d u}{d \phi}\right)^{2}+\frac{L^{2}}{M^{2}}-2 u+u^{2}-\frac{2 M^{2}}{L^{2}} u^{3}=\frac{2 \xi L^{2}}{M^{2}}
\end{aligned}
$$

Diffumtiating again with ruspect to ϕ :

$$
\begin{aligned}
& 2\left(\frac{d u}{d \phi}\right) \frac{d^{2} u}{d \phi^{2}}-2 \frac{d u}{d \phi}+2 u \frac{d u}{d \phi}-\frac{6 M^{2} u^{2} \frac{d u}{L^{2}} \frac{d \phi}{d \phi}=0}{\Rightarrow \quad \frac{d^{2} u}{d \phi^{2}}-1+u=\frac{3 M^{2}}{L^{2}} u^{2}}
\end{aligned}
$$

We will sabre this equation treating the $G R$ term putuntatively

$$
u=u_{0}+\varepsilon u_{1}, \quad \varepsilon \ll 1 \quad \frac{3 M^{2}}{L^{2}} \sim \theta(\varepsilon)
$$

Taylor-cupanding and wellecting the various ondess in ε we find:

$$
\begin{aligned}
\theta\left(\varepsilon^{0}\right) & : \frac{d^{2} u_{0}-1+u_{0}=0}{d \phi^{2}} \\
\Rightarrow & u_{0}=1+e \cos \phi \Rightarrow r=\frac{L^{2}}{M(1+e \cos \phi)}
\end{aligned}
$$

\rightarrow That's the equation for an ellipse with eccentriatye.

$$
\begin{aligned}
& \theta(\varepsilon): \\
& \begin{aligned}
\frac{d^{2}}{d \phi^{2}} u_{1}+u_{1} & =\frac{3 M^{2}}{L^{2}} u_{0}^{2}=\frac{3 M^{2}}{L^{2}}(1+e \cos \phi) \\
& =\frac{3 M^{2}}{L^{2}}\left[\left(1+\frac{1}{2} e^{2}\right)+2 e \cos \phi+\frac{1}{2} e^{2} \cos (2 \phi)\right] \\
\Rightarrow u_{1} & =\frac{3 M^{2}}{L^{2}}\left[\left(1+\frac{1}{2} e^{2}\right)+e \phi \sin \phi-\frac{1}{6} e^{2} \cos (2 \phi)\right]
\end{aligned}
\end{aligned}
$$

The first term is a shift in u and the last tam oscillates around O. The second term is a secular term and alters the pernod of the orbits.

To see this, combine this term with the $0^{\text {th }}$ order solution:

$$
\begin{aligned}
u & =1+e \cos \phi+\frac{3 M^{2}}{L^{2}} e \phi \sin \phi \\
& =1+e \cos [(1-\alpha) \phi], \alpha=\frac{3 M^{2}}{L^{2}}
\end{aligned}
$$

Indeed, Tayber-wepand in α :

$$
\begin{aligned}
\cos [(1-\alpha) \phi] & \approx \cos \phi+\left.\alpha \frac{d}{d \alpha} \cos [(1-\alpha) \phi]\right|_{\alpha=0}+O\left(\alpha^{2}\right) \\
& =\cos \phi+\alpha \phi \sin \phi+O\left(\alpha^{2}\right)
\end{aligned}
$$

\rightarrow This implies that the periodicity of u is no longer 2π but

$$
(1-\alpha) \Delta \phi=2 \pi \Rightarrow \Delta \phi=\frac{2 \pi}{1-\alpha} \approx 2 \pi(1+\alpha)
$$

\Rightarrow for each onbit the paihelion advances

$$
\delta \phi=2 \pi \alpha=\frac{6 \pi G^{2} M^{2}}{L^{2}}
$$

L can be related to the panameters of the $0^{\text {th }}$ oren ellipse: The equation for an ellipse with semi- major aves \underline{a} is

$$
\begin{aligned}
& r=\frac{\left(1-e^{2}\right) a}{1+e \cos \phi}=\frac{L^{2}}{M(1+e \cos \phi)} \Rightarrow L^{2}=M a\left(1-e^{2}\right) \\
\Rightarrow & \delta \phi=\frac{6 \pi G M}{c^{2}\left(1-e^{2}\right) a}
\end{aligned}
$$

For Many this is $\delta \phi=43^{\prime \prime} /$ counting and for the Earth $\delta \phi=3.8^{\prime \prime} /$ counting.

- Bending of light
- Repeating the each same computation as before but now for null geoclsics $(\varepsilon=0)$ and defining $u=1 / r$ we get the following equation for u :

$$
\frac{d^{2}}{d \phi^{2}}+u=\underbrace{\frac{3 G M}{c^{2}}} u^{2}
$$

small $G R$ conduction

$$
\delta=\frac{G M}{c^{2}} \ll u
$$

As before, we expand the solution in penturtation theory: $u=u_{0}+u_{1}, u_{1} \sim \delta$
$0^{\text {th }}$ order: $\quad \frac{d^{2}}{d \phi^{2}} u_{0}+u_{0}=0$

$$
\Rightarrow u_{0}=\frac{1}{b} \sin \phi \Rightarrow r \sin \phi=b
$$

\rightarrow Straight line with impact parameter b : light sent from $r=\infty(\phi=0)$ retiuns to $r=\infty(\phi=\pi)$
"O"

\rightarrow Change of the angle ϕ along the trajectory: $\Delta \phi=\pi$
The equation for the putiutation is

$$
\begin{aligned}
& \frac{d^{2} u_{1}}{d \phi^{2}}+u_{1}=3 \delta u_{0}^{2}=\frac{3 \delta}{b^{2}} \sin ^{2} \phi \\
\Rightarrow & u_{1}=\frac{\delta}{b^{2}}\left(1+C \cos \phi+\cos ^{2} \phi\right) ; \text { C: integration constant }
\end{aligned}
$$

So the full solution including the first order connections is

$$
u=\frac{1}{b} \sin \phi+\frac{\delta}{b^{2}}\left(1+c \cos \phi+\cos ^{2} \phi\right)
$$

We want to calculate the deflection angle $\delta \phi$ For away from the some, $r \rightarrow \infty$ and hence $u \rightarrow 0$ and we tale the angle ϕ to be $-\varepsilon_{1}$ and $\pi+\varepsilon_{2}$ for $r \rightarrow \infty$, with ε_{1} and $\varepsilon_{2} O(\delta)$

$$
\begin{aligned}
& -\frac{\varepsilon_{1}}{b}+\frac{\delta}{b^{2}}(2+c)=0 ;-\frac{\varepsilon_{2}}{b}+\frac{\delta}{b^{2}}(2-c)=0 \\
& \Rightarrow \delta \phi=\varepsilon_{1}+\varepsilon_{2}=\frac{4 \delta}{b}=\frac{46 M}{c^{2} b}
\end{aligned}
$$

For a light ray garaging the sun this jives

Gravitational Redshift
Consider a stationary obsuwen in the Schw. geometry: the fom-velonity is u^{a} with $U^{i}=0$

$$
\begin{aligned}
& \Rightarrow u_{a} u^{a}=g_{a b} u^{a} u^{b}=-1 \\
& \Rightarrow u^{0}=\left(1-\frac{2 M}{r}\right)^{-1 / 2}
\end{aligned}
$$

The frequency of a photon $\left(\rightarrow\right.$ null geodesic $\left.x^{a}(\lambda)\right)$ measured by such $a m$ obsewver is

$$
\begin{aligned}
w & =-g_{a b} U^{a} \dot{x}^{b}, \dot{x}^{a}=\frac{d x^{a}}{d \lambda}: \begin{array}{l}
\text { tangent vector to } \\
\text { the geodesic }
\end{array} \\
& =\left(1-\frac{2 M}{r}\right)^{1 / 2} \dot{t} \\
& =\left(1-\frac{2 M}{r}\right)^{-1 / 2} E \quad \sin c \quad\left(1-\frac{2 M}{r}\right) \dot{t}=E=\text { count }
\end{aligned}
$$

along the geodesics
Since E is constant, then w will tale liffuent values when measured at different values of r : For a photon emitted at r_{1} and obscured at r_{2}, the corresponding measured fequancies are

$$
\frac{w_{2}}{w_{1}}=\left(\frac{1-2 M / r_{1}}{1-2 M / r_{2}}\right)^{1 / 2}
$$

In the limit $r_{1}, r_{2} \gg 2 M$, we have

$$
\frac{w_{2}}{w_{1}} \approx 1-\frac{M}{r_{1}}+\frac{M}{r_{2}}=1+\Phi_{1}-\Phi_{2}
$$

where $\Phi=-\frac{M}{r} \quad(G=1)$ is the Newtonian potential.

