The second asstssment is to be uploaned anto QMplus on 04/04
with dendline

$$
\frac{15104}{11 \mathrm{am}}
$$

Hand Your work in at Mitre oflice

Cast Manday
(R, t, X) a Hing
Therrem 25, $R[x]$ is a ting
If R is a ring with itentity

$$
\text { so is } R|x| \quad \exists 1 \in R
$$

If R is camonnturte: dt

$$
x \text { so io } R[x]^{1 \cdot a=a \cdot 1} \begin{array}{r}
a \\
\theta a \in R
\end{array}
$$

$\forall a b$ $a b=b a$

RK I should hare mentioned that 0_{11} does not hare

$$
\cdots O_{R} x^{n}+O_{2} x^{n-1}+\cdots+O_{R}
$$

a wellodefinged notion if degree

$$
\begin{aligned}
& \text { Given } f, g \in R(x) \\
& \qquad \operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)
\end{aligned}
$$

holds only if R is "a Fins with no zero duysurs"
(integral domain)
For this reason, we will only consider $F(x)$
to identity $=+$ to set io pulynomich element with coeffts in a field

$$
(F,+, X)
$$

$\operatorname{Prop} 27 \quad F(x)^{x}$
$\cdots 0 x^{n}+\cdots+0 x+1$
the subset if
wits in $F(x)$

$$
\begin{aligned}
& \text { wits in } F(x) \\
& \left\{f \in F[x] \mid \exists g \text { sit. } f \cdot g^{\prime \prime}\right.
\end{aligned}
$$

Therrem28 (Division aforithm
fo $F|x|)$
$f, g \in F[x]$

* Ton the exist $q, r \in F|x|$
st. $f=q \cdot g+r$
where r is either 0
or $\quad \operatorname{deg}(r)<\log (g)$
If Please look at the typed-up notes.

Def fige Fix].
whe say that 5 druves f

$$
\begin{aligned}
& \text { if } \begin{array}{l}
z q \in F|x| \\
\text { of } f=q, g
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f=1 \cdot f \\
& \text { th } 2 \text {-pa|ynamil }
\end{aligned}
$$

- If $c \in F^{x}=F-503$ ct ciuk k ds f bawe $f=(\in f f(t)$

$$
\begin{aligned}
& C \cdot C_{n}(f) x^{n}+C \cdot C_{n-1}|f| x^{n-1}+\cdots+C \cdot C_{1} f x \\
& +C \cdot C(f) \\
& \text { if } f=C_{n}(f) x^{n}+\cdots+C_{1}(f) x+C_{0}(f)
\end{aligned}
$$

- If 9 divikes f.
tom cg also diviks f.

$$
C \in F^{x}=F-\{0\} .
$$

If g divides f, tem. $\exists q$ s.t.

$$
f=g \cdot q
$$

$$
\Rightarrow f=(c g)\left(c^{-1} q\right)
$$

" c^{-1} " mates serra because
$C \in F-\{0\}$ and has matipicate
P inesese

These are all becuise
the units of $F|x|$ are F^{-x}

$$
F-\{00\}
$$

Examples

- no pulynominal dives

$$
x^{2}+1 \text { in } Q[\sqrt{x})
$$

Not true!
In fact $x^{2}+1$

$$
\begin{aligned}
& \left.c\left(x^{2}+1\right) \quad \forall c \in Q-20\right\} \\
& c \quad(\text { bears } \\
& x^{2}+1=c \cdot\left(c^{-1}\left(x^{2}+1\right)\right)
\end{aligned}
$$

all divide $x^{2}+1$.
What I meant was Hat
no polynomial of degree 1 in ©D|x?
Inced, if there were,
ten

$$
\begin{aligned}
x^{2}+1= & (x+a)(x+b) \\
& a \cdot b \in \mathbb{Q} . \\
= & x^{2}+ \\
& (a+b) x \\
& +a b \\
a+b=0 & \cdots
\end{aligned}
$$

(*) $\Rightarrow b=-a$
Plugging this into **,

$$
a \cdot(-a)=1
$$

$$
\Rightarrow-a^{2}=1
$$

Homerer $-a^{2} \leq 0$
This in a contanaiction!
Thentuve. $x^{2}+1$ is NJI a procent of deyce 1 phrnomits in Q|x]

- $x^{2}+1$ is intact
a proact of degree 1 polxneminale
Indeed,

$$
x^{2}+1=(x+i)(x-i)
$$

$$
\begin{array}{cc}
p & p \\
\mathbb{C}|x| & \mathbb{C}|x| .
\end{array}
$$

- $x^{2}+1$ is alsu ciuistle

$$
\begin{aligned}
& \mathbb{H}_{2}|x| \\
& \mathbb{Z}_{2} \\
& x^{2}+[1] \in \mathbb{F}_{2}[x] \text {. } \\
& \mathbb{F}_{2}=\{\lceil 0\rceil,\lceil 1\rceil\} \\
& \text { acditiol multulicho } \\
& \text { identity ichanticy }
\end{aligned}
$$

$$
\begin{aligned}
& (x+[1])(x-[1]) \\
= & x^{2}+[1] x-[1] x-[1]^{2} \\
= & x^{2}-[1] \\
= & x^{2}+[1] \quad[-1]_{2}=[1]_{2} \\
& -[1]_{2}
\end{aligned}
$$

Cor 29
Let F be a field

$$
\alpha \in F
$$

Then there exist $q \in F(x), r \in F$

$$
\text { st. } f=(x-\alpha \mid q+r
$$

If $g=(x-\alpha)$

$$
\begin{aligned}
& \operatorname{deg}(r)<\operatorname{deg}(x-\alpha)=1 \\
& \Rightarrow \operatorname{deg}(t)=0
\end{aligned}
$$

$\Rightarrow r$ is a nom-zere element in F.

Cor 30 F: a field

$$
\alpha \in F
$$

Ton the remainder of $f \in F[x]$
wen divided by $x-\alpha$ is $f|\alpha|$
In particular,

$$
\begin{array}{r}
f(\alpha)=0 \Leftrightarrow x-\alpha \text { divides } \\
\\
\\
f(x) .
\end{array}
$$

If see the notes

$$
\{[0],[1], \cdots,[6]\}
$$

Examples

$$
\text { Casidev } \begin{aligned}
f(x) & =x^{2}+3 \in \mathbb{H}_{r}|x| \\
& =x^{2}+[3]_{7}
\end{aligned}
$$

Claim $x-[2]$, divides $x^{2}+3$

$$
\text { in } \mathbb{F}_{r}[x]
$$

By Corollary 30, all we need to check is $f\left([2]_{n}\right)=[0]$

Inked.

$$
\begin{aligned}
& f([2))=[2]^{2}+[3] \\
& =\lceil 2 \cdot 2\rceil+[3] \\
& =\lceil 4\rceil+\lceil 3\rceil=[7\rceil \\
& =\lceil 0\rceil \text {. }
\end{aligned}
$$

Similarly,
$X+[2]$ also divides

$$
\begin{aligned}
& x^{2}+3 \\
& \text { in } \mathbb{H}_{\eta}|x\rangle
\end{aligned}
$$

Need to check

$$
\begin{gathered}
f(-[2])=[0] \\
{[-2]}
\end{gathered}
$$

- No degree 1 polynomial divides $x^{2}+2$ in $F_{5}[x)$

