Reminder
Coursework 2 deadline: Monday 18 March 9 am

Recap quiz
How do we know when to stop the basic simplexalgaritum? (wee ks)
We strap the basic simplex algaritum if, in our current tablecul, all the entries in the last row are zero ar negative

How do we know when phase I ends in the 2 -phase simplex algorithm?
we stop phase I if, in our current tableany all the entries in the w-row are zero or negative
If the for right entry in w-row is O we move on to phase 2 , and otherwise we conclude our LP is infeasible.

Sofar - modelling real-life problem

- solving Lbs using geomety
- extreme paints/basic feasible solutions
- simplex $=$ solving LPS algebraically

Duality
Every LP has a "twin" LP called the dual The dual has several practical interpretations, Later will see that solving these two cps together models two people playing a game,
Motivating example

$$
\begin{aligned}
& \operatorname{maximise} 2 x_{1}+3 x_{2}+x_{3} \\
& \text { subject to } \quad x_{1}+x_{2}+x_{3} \leqslant 10 \\
& \frac{1}{2} x_{1}+x_{2} \leqslant 8 \\
& x_{1}+x_{2}-x_{3} \leqslant 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

want a quick upper band for the objective using constraints.

Motivating example

$$
\begin{aligned}
& \text { maximise } 2 x_{1}+3 x_{2}+x_{3} \\
& \text { subject to } \quad x_{1}+x_{2}+x_{3} \leqslant 10 \quad c_{1} \\
& \frac{1}{2} x_{1}+x_{2} \leqslant 8 c_{2} \\
& x_{1}+x_{2}-x_{3} \leqslant 4 c_{3} \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

wont a quick upper band for the objective using constraints.
Consider 3C1. Gives

$$
\begin{aligned}
2 x_{1}+3 x_{2}+x_{3} & \underset{\uparrow}{\text { objective }} \\
& x_{1}, x_{2}, x_{3} \geqslant c
\end{aligned}
$$

So every feasible solution has dojective value $\leqslant 30$.
Give better bound by taking linear combination at constraints.
Take $C_{1}+2 C_{1}$. Gives

$$
\begin{aligned}
&\left(x_{1}+x_{2}+x_{3}\right)+2\left(\frac{1}{2} x_{1}+x_{2}\right) \\
& \Rightarrow \quad \underbrace{}_{1}+3 x_{2}+x_{3}<26 \\
&=\text { objective. }
\end{aligned}
$$

Every feasible solution has objective vale ≤ 26.
Here, not allowed to consider e.9. $\psi C_{1}-C_{3}$. Why? The minus sign reverses inequaling in C_{3}.

What is the best possible upper band we con get?

$$
\begin{array}{rlrl}
\text { maximise } & 2 x_{1}+3 x_{2}+x_{3} & \leqslant 10 & c_{1} \\
\text { subject to } & x_{1}+x_{2}+x_{3} & \leqslant 1 \\
\frac{1}{2} x_{1}+x_{2} & \leqslant 8 & c_{2} \\
x_{1}+x_{2}-x_{3} & \leqslant 4 & c_{3} \\
& x_{1}, x_{2}, x_{3} & \geqslant 0 &
\end{array}
$$

Consider $y_{1} C_{1}+y_{2} C_{2}+y_{3} C_{3}$ with $y_{1}, y_{2}, y_{3} \geq 0$
Gives $\quad y_{1}\left(x_{1}+x_{2}+x_{3}\right)+y_{2}\left(\frac{1}{2} x_{1}+x_{2}\right)+y_{3}\left(x_{1}+x_{2}-x_{3}\right)$

$$
\underset{(x)}{ } 10 y_{1}+8 y_{2}+4 y_{3}
$$

$$
\sum_{(*)} 10 y_{1}+8 y_{2}+4 y_{3}
$$

Then we have

$$
\begin{gathered}
2 x_{1}+3 x_{2}+x_{3} \sum_{(x *)}^{\text {want }}\left(y_{1}+\frac{1}{2} y_{2}+y_{3}\right) x_{1}+\left(y_{1}+y_{2}+y_{3}\right) x_{2} \\
\quad+\left(y_{1}-y_{3}\right) x_{3} \\
\leq 10 y_{1}+8 y_{2}+4 y_{3}
\end{gathered}
$$

Best possible upper band an objective given by solving

$$
\text { minimise } 10 y_{1}+8 y_{2}+4 y_{3}
$$

$$
\left.\left.\begin{array}{llll}
\text { subject te } & y_{1}+\frac{1}{2} y_{2}+y_{3} \geqslant 2 & c_{1}^{\prime} \\
& y_{1}+y_{2}+y_{3} \geqslant 3 & c_{2}^{\prime} \\
y_{1}-y_{3} \geqslant 1 & c_{3}^{\prime}
\end{array}\right\} \begin{array}{c}
\text { constraints } \\
\text { guarantee } \\
(* *) \\
\\
y_{1}, y_{2}, y_{3} \geqslant 0
\end{array}\right\} \text { guarantees }(x)
$$

How would we modify
(i) if x_{1} was unrestricted c^{\prime} has to be equality constraint
(ii) C_{3} was equality constraint, y_{3} is unrestricted.

Detn Given CP in standard inequality farm with n variables and m constraints
$\max \mathbb{C}^{\top} x$

$$
\max c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

sub to $A \underline{x} \leqslant b$

$$
\underline{x} \geqslant \underline{0}
$$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leqslant b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leqslant b_{n} \\
& x_{11} x_{2}, \ldots, x_{n} \geqslant c
\end{aligned}
$$

the dual $L P$ has m variables and n constraints and is given by
min bT $\quad \min b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m}$
sub tc $A^{\top} \underline{y} \geqslant c$ Subtc $a_{11} y_{1}+a_{21} y_{2}+\cdots+a_{m 1} y_{m} \geqslant c_{1}$

$$
y \geqslant \underline{0}
$$

$$
\begin{gathered}
a_{12} y_{1}+a_{22} y_{2}+\cdots+a_{m 2} y_{m} \geqslant c_{2} \\
\vdots \\
a_{1 n} y_{1}+a_{2 n} y_{2}+\cdots+a_{m n} y_{m} \geqslant c_{n} \\
y_{1}, y_{2} \cdots, y_{m} \geqslant a_{1} .
\end{gathered}
$$

Example

What is dual of
$\max 10 x_{1}+20 x_{2}$

$$
\text { sub to } \begin{array}{r}
x_{1}+2 x_{2} \leqslant 3 \\
4 x_{1}+5 x_{2} \leqslant 9
\end{array}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

dual
$\min 3 y_{1}+9 y_{2}$
subtc $y_{1}+4 y_{2} \geqslant 10$

$$
\begin{gathered}
2 y_{1}+5 y_{2} \geqslant 20 \\
y_{1}, y_{2} \geqslant 0
\end{gathered}
$$

Note: original LP is called the primal LP

Thu (weak duality theorem for $(P s$)
consider a LP in standard inequality form
i.e. max $\underline{c}^{\top} x$ and its dual min $\underline{b}^{\top} \underline{y}$
sub to $A \underline{x} \leqslant \underline{b}$
sub to $A^{\top} \underline{y} \geqslant 5$

$$
\begin{equation*}
x \geqslant 0 \tag{y}
\end{equation*}
$$

If x is a feasible solution for the primal LP and y is a feasible solution for the dual LP
then $c^{\top} x \leqslant \underline{b}^{\top} \underline{y}$
Example

What is dual of
$\max 10 x_{1}+20 x_{2} \quad \min 3 y_{1}+9 y_{2}$
sub to $x_{1}+2 x_{2} \leqslant 3$ subtc $y_{1}+4 y_{2} \geqslant 10$

$$
\begin{aligned}
4 x_{1}+5 x_{2} & \leqslant 9 \\
x_{1}, x_{2} & \geqslant 0
\end{aligned}
$$

dial

Find any feasible sclutim for primal and any feasible solution for dual and verity twat the weak duality theorem holds.
egg. for primal $\binom{x_{1}}{x_{2}}=\binom{1}{1}$ is feasible objective vale (i.e. (Tx $)=\mid 0 \times 1+20 \times 1=30$
e.9. Far dual $\binom{y_{1}}{y_{2}}=\binom{0}{5}$ is feasible objective vale ie. $\underline{b^{\top} I}=3 \times 0+9 \times 5=45$
Indeed $c^{T} x \leq b^{T} \underline{y}$.

Ing (weak duality theorem for CPs)
Consider a LP in standard inequality for
ie. max $\underline{c}^{\top} \underline{x}$ and its dual min $b^{\top} y$
sub tc $A \underline{x} \leqslant \underline{b} \quad$ sub to $A^{\top} \underline{y} \geqslant \leq$
$x \geqslant 0$
$\underline{-} \geqslant 0$
If x is a feasible solution to the primal IP and y is a feasible solution for the dual LP then $c^{\top} x \leq \underline{b}^{\top} \underline{y}$
Pf Fact 1 Suppose $\underline{a}, \underline{b}, \underline{x} \in \mathbb{R}^{n}$ with $\underline{a} \leq \underline{b}, \underline{x} \geqslant \underline{0}$. Then
(a) $\underline{a}^{\top} \leqslant \underline{b}^{\top}$
(b) $x^{\top} \underline{a} \leqslant \underline{x}^{\top} \underline{b}$

Fact 2 For matrices $(A B) T=B T A T$
Know $A \underline{x} \leq \underline{b}^{(1)}$ and $\underline{x} \geqslant 0$ since x is feasible for primal $A^{\top} \underline{y} \geqslant \leq$ and $\underline{y} \geq 0$ since \underline{y} is feasible for dual same as $\left(A^{\top} \underline{y}\right)^{\top} \geqslant c_{T}$ by fact $1(a)$
save as $y^{\top} A \geqslant c^{\top^{(2)}}$ by fact 2
Multiply (1) by y^{\top} on the lett to give

$$
y^{\top} A x \leqslant \underline{y}^{\top} \underline{b} \text { by Fact }((b) \text { since } \underline{y} \geqslant \underline{0}
$$

Multiply (2) by x on the right to give $\underline{y}^{\top} A \underline{x} \geqslant \underline{c}^{\top} \underline{x}$ by Fact $1(b)$ since $\underline{x} \geqslant 0$

Combining gives

$$
C T x \leqslant y^{\top} A \underline{x} \leqslant \underline{y}^{\top} b=\underline{b}^{\top} \underline{y}
$$

The (strong duality theorem)
Suppare we have CP in standard inequality fam $\max c^{\top} x$ and its dual min $b^{\top} y$
sub to $A x \leqslant b$ $x \geqslant 0$ sub to $A^{\top} \underline{y} \geqslant c$ $\underline{v} \geqslant 0$
If x^{4} is an optimal solution for the primal $L \varphi$ y* is an optimal solution for the dual Ll
then $\underline{c}^{\top} x^{*}=\underline{b}^{\top} \underline{y}^{*}$
i.e. both LIs have the same optimal objective value.
Proof
Goal: find same feasible 1 for the dual

$$
\text { sit. } \quad \underline{b}^{\top} \underline{y}=c^{\top} x^{*}
$$

If we con do this then

$$
\underline{b}^{\top} \underline{y}^{*} \geqslant \underline{c}^{\top} \underline{x}^{*}=\underline{b^{\top}} \underline{y} \geqslant \underline{b}^{\top} \underline{y}^{*}
$$

\uparrow weak duality $\uparrow_{\text {because } y^{*} \text { is optimal }}$ theorem.
\Rightarrow all inequalities above are equalities $\Rightarrow b^{T} \underline{y}^{*}=c T \underline{x}^{x}$ as required.

Goal: find same feasible y for the dual

$$
\text { sit. } \quad \underline{b}^{\top} \underline{y}=\underline{c}^{\top} x^{*}
$$

we will achieve our goal by applying simplex to primal LP.
consider initial and final tableaux
$\left.\begin{array}{cc|ccc|cccc|c} & & x_{1} & x_{2} & x_{1} & x_{n} & s_{1} & s_{2} & \cdots & s_{m} \\ R_{1} & s_{1} & & a_{i i} & & 1 & 0 & & 0 & b_{1} \\ R_{2} & s_{2} & & A_{2 i} & & 0 & 1 & & \vdots & b_{2} \\ & \vdots & & & & 0 & \ddots & 0 & 0 \\ R_{m} & s_{m} & & a_{m i} & & 0 & 0 & & 0 & 1 \\ R_{z} & & c_{1} & c_{2} & c_{i} & c_{n} & 0 & 0 & \cdots & 0\end{array}\right)$

Intial tableace

		x_{1}	x_{2}	x_{i}	x_{n}	s_{1}	s_{2}	\cdots	s_{m}
R_{1}^{\prime}		2	2			2			
$R_{2} I$	$?$	$?$			$?$				
\vdots									
R_{m}^{\prime}									
R_{z}^{\prime}		P_{1}	P_{2}	$\cdot p_{i}$	p_{n}	q_{1}	q_{2}	\cdots	q_{m}
	z^{*}								

Final tableau

Overall, we know R_{z}^{\prime} is obtained from R_{z} by adding a linear combination of the other rows
we con read it off

$$
R_{z}^{\prime}=R_{z}+q_{1} R_{1}+q_{2} R_{2}+\cdots+q_{m} R_{m}(x)
$$

choose $y \in \mathbb{R}^{m}$ sit. $y_{i}=-q_{i}$
Claim y is feasible for the dual
of ct claim $\underline{y} \geqslant 0$ since $q_{i} \leqslant 0 \forall i$. since all entries in last row of final tableau are $\leqslant 0$.

Examine column of x :
using (4) we have that

$$
\begin{gathered}
c_{i}+a_{1 i} q_{1}+a_{2 i} q_{2}+\cdots+a_{m i} q_{m}=p_{i} \leqslant 0 \\
-y_{m} \quad \begin{array}{c}
q_{2} \\
\text { final } \\
\text { riv cf } \\
\text { final } \\
\text { tabled. }
\end{array} \\
\Rightarrow c_{i} \leqslant a_{1 i} y_{1}+a_{2 i} y_{2}+\cdots+a_{m i} y_{m} \quad
\end{gathered}
$$

This shows y satisfies it constraint of dual. Works for all $i=1, \ldots, n$ So \underline{y} is feasible

Claim $\underline{b^{T} \underline{y}}=c^{\top} \underline{x}^{*}$
It of claim Note that $\underline{\operatorname{cr} \underline{x}^{*}}=-2^{*}$
Examining final column using C_{\neq})

$$
\begin{aligned}
& q_{1} b_{1}+q_{2} b_{2}+\cdots q_{m} b_{m}+0=z^{*} \\
\Rightarrow & -y_{1} b_{1}-y_{2} b_{2}-\cdots-y_{m} b_{m}=z^{*}=-c^{\top} \underline{x}^{*} \\
\Rightarrow & -b^{\top} \underline{y}=-c^{\top} \underline{x}^{*} \\
\Rightarrow & b^{\top} \underline{y}=c^{\top} \underline{x}^{*}
\end{aligned}
$$

Remarks

1) In proct, we assumed $\underline{b} \geqslant \underline{0}$ so that we could apply standard simplex algaitum. Essentially the same argument works if we apply the 2 -phase algaritum.
2) When applying simplex to primal $L \rho$ the last ion also gives optimal solution for dual (take $y_{i}=-q_{i}$).

If $L P$ is not in standard inequality form, how do we find the dual?
Assume $L P$ is maximisation (something similar tor minimisation (see printed notes).

1) Multiply constraint by -1 it necessoy so that each constraint lacks line

$$
\text { or } \begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} & \leqslant b \\
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} & =b
\end{aligned}
$$

Replace each variable x_{i} with $-\overline{x_{i}}$ it necessary so all sign restrictions ane $\geqslant 0$ or un restricted.
2) Recall dual of standard inequality form:

Primal

$$
\begin{gathered}
\max \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { i.e. subtc } a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leqslant b_{1} \text { con } 1 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leqslant b_{2} \text { can 2 } \\
\vdots \\
a_{n 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leqslant b_{n} \text { con } m \\
x_{11} x_{2}, \ldots, x_{n} \geqslant c
\end{gathered}
$$

dual
min $b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{m} y_{m}$

$$
\begin{aligned}
& \text { Subtc } a_{11} y_{1}+a_{21} y_{2}+\cdots+a_{m 1} y_{n} \geqslant a_{i} \text { con } 11 \\
& a_{1} y_{1}+a_{22} y_{2}+\cdots+a_{m 2} y_{m} \geqslant r_{2} \text { con } 21 \\
& a_{m y_{1}}+a_{2 n} y_{2}+\cdots+a_{m n} y_{m} \geqslant \varepsilon_{n} \text { con } n^{\prime} \\
& y_{1}, y_{2} \ldots, y_{m} \geqslant 0
\end{aligned}
$$

After step I our LP locks line primal LP above except sone constraints have equaling and sone variables one unrestricted,
If any constraint in primal $L P$, say con i, is on equality constratut then replace $y_{i} \geq 0$ with y_{i} unrestricted in dual.
It any variable in primal, say x_{j}, is unrestricted then conj' with equality in dual

Example Find drat of following Ll
maximise $x_{1}+6 x_{2}+5 x_{3}$
sub to $x_{1} \quad-3 x_{3} \quad \leqslant 10$

$$
\begin{aligned}
x_{2}+7 x_{4} & \geqslant 13 \\
7 x_{1}+11 x_{2}+9 x_{3} & =100 \\
3 x_{1}-5 x_{2}+7 x_{3} & \leqslant 20
\end{aligned}
$$

$x_{1}, x_{4} \geqslant 0 \quad x_{2}, x_{3}$ unrestricted.
step
maximise $x_{1}+6 x_{2}+5 x_{3}$
sub to $x_{1}-3 x_{3} \leq 10 \quad y_{1}$

$$
\begin{array}{rll}
-x_{2}-7 x_{4} & \leqslant-13 & y_{2} \\
7 x_{1}+11 x_{2}+9 x_{3} & =100 & y_{3} \\
3 x_{1}-5 x_{2}+7 x_{3} & \leqslant 20 & y_{4}
\end{array}
$$

$x_{1}, x_{4} \geqslant 0 \quad x_{2}, x_{3}$ unrestricted,
Step 2
minimise $10 y_{1}-13 y_{2}+100 y_{3}+20 y_{4}$
sub to

$$
\begin{array}{rlrl}
y_{1} & +7 y_{3}+3 y_{4} & \geqslant 1 & \\
0 y_{1}-y_{2}+11 y_{3}-5 y_{4} & =6 & & x_{2} \text { unres } \\
-3 y_{1} & +2 y_{3}+7 y_{4} & =5 & \\
x_{3} \text { undies } \\
-7 y_{2} & \geqslant 0 & x_{4} \geqslant 0
\end{array}
$$

$$
y_{1}, y_{2}, y_{4} \geqslant 0, y_{3} \text { unves. }
$$

