MTH793P
Advanced Machine Learning, Semester B, 2023/24

## Coursework 9

In this coursework we will prove a few statements that we used in the lecture.

## Robust PCA

1. Let $X \in \mathbb{R}^{m \times n}$, and consider its SVD: $X=U \cdot \Sigma \cdot V^{T}$. Let $A, B \in \mathbb{R}^{m \times n}$ be two different matrices. Prove that $B=U^{T} \cdot A \cdot V$ if and only if $A=U \cdot B \cdot V^{T}$.
2. Let $X \in \mathbb{R}^{m \times n}$, and suppose that $\sigma_{1}, \ldots, \sigma_{r}$ are the singular values of $X(r=$ $\min (m, n)$ ). Let $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ be two orthogonal matrices. Define $\tilde{X}=U \cdot X \cdot V^{T}$. Prove that $X$ and $\tilde{X}$ have the same singular values.
3. Let $X \in \mathrm{R}^{m \times n}$, and recall the definition of the singular thresholding operator

$$
D_{\tau}(X)=U S_{\tau}(\Sigma) V^{T}
$$

where $U \Sigma V^{T}$ is the SVD decomposition of $X$. Prove that:
(a) $\left\|D_{\tau}(X)\right\|_{*} \leq\|X\|_{*}$, where $\|\cdot\|_{*}$ is the nuclear norm.
(b) $\operatorname{rank}\left(D_{\tau}(X)\right) \leq \operatorname{rank}(X)$.

Under what conditions will we have $\left\|D_{\tau}(X)\right\|_{*}=\|X\|_{*}, \operatorname{rank}\left(D_{\tau}(X)\right)=\operatorname{rank}(X)$ ?

## Matrix Completion

Let $M \in \mathrm{R}^{m \times n}$. Recall that $\Omega$ represents the indexes of known values in $M$, and $P_{\Omega}(\cdot)$ is the projection on these locations.
4. Let for any $X, Y \in \mathbb{R}^{m \times n}$ show that $\left\langle X, P_{\Omega}(Y)\right\rangle=\left\langle P_{\Omega}(X), Y\right\rangle$.

## Solution

1. By definition, we know that $U \in \mathbb{R}^{m \times m}$ satisfies $U^{T} U=I_{m \times m}$, and $V \in \mathbb{R}^{n \times n}$ satisfies $V^{T} V=I_{n \times n}$. This implies that $U^{-1}=U^{T}$ and $V^{-1}=V^{T}$.
Suppose that $B=U^{T} \cdot A \cdot V$, then

$$
U \cdot B \cdot V^{T}=U \cdot U^{T} \cdot A \cdot V \cdot V^{T}=I_{m \times m} \cdot A \cdot I_{n \times n}=A
$$

Similarly, if $A=U \cdot B \cdot V^{T}$, then

$$
U^{T} \cdot A \cdot V=A=U^{T} \cdot U \cdot B \cdot V^{T} \cdot V=B
$$

2. We take the SVD $X=U_{X} \cdot \Sigma_{X} V_{X}^{T}$, then the diagonal of $\Sigma_{X}$ consists of $\sigma_{1}, \ldots, \sigma_{r}$. Now

$$
\tilde{X}=U \cdot X \cdot V^{T}=\left(U \cdot U_{X}\right) \cdot \Sigma_{X} \cdot\left(V \cdot V_{X}\right)^{T}
$$

Note that $\tilde{U}=U \cdot U_{X} \in \mathbb{R}^{m \times m}$ statisfies

$$
\tilde{U}^{T} \tilde{U}=\left(U \cdot U_{X}\right)^{T} \cdot\left(U \cdot U_{X}\right)=U_{X}^{T} \cdot\left(U^{T} \cdot U\right) \cdot U_{X}=U_{X}^{T} \cdot U_{X}=I_{m \times m}
$$

Similarly, $\tilde{V}^{T} \cdot \tilde{V}=I_{n \times n}$. Therefore,

$$
\tilde{X}=\left(U \cdot U_{X}\right) \cdot \Sigma_{X} \cdot\left(V \cdot V_{X}\right)^{T}
$$

is the SVD decomposition of $\tilde{X}$, from which we conclude that the singular values are $\sigma_{1}, \ldots, \sigma_{r}$.
3. (a) Suppose that the singular values of $X$ are $\sigma_{1}, \ldots, \sigma_{r}$. In that case the singular values of $D_{\tau}(X)$ are $S_{\tau}\left(\sigma_{1}\right), \ldots S_{\tau}\left(\sigma_{r}\right)$. By the definition of $S_{\tau}$, and since the singular values are non-negative, we know that $S_{\tau}\left(\sigma_{i}\right) \leq \sigma_{i}$. Therefore

$$
\left\|D_{\tau}(X)\right\|_{*}=\sum_{i=1}^{r} S_{\tau}\left(\sigma_{i}\right) \leq \sum_{i=1}^{r} \sigma_{i}=\|X\|_{*}
$$

We have equality if and only if $S_{\tau}\left(\sigma_{i}\right)=\sigma_{i}$ for all $i$. This can happen only if $\sigma_{i}=0$. In other words, this is true only if $X=0$.
(b) Suppose that $\sigma_{1} \geq \ldots \geq \sigma_{r}>0, r=\min (m, n)$ are the singular values of $X$. If $\operatorname{rank}(X)=d$ then $\sigma_{i}=0$ for all $i>d$. The new singular values are given by $\hat{\sigma}_{i}=$ $S_{\tau}\left(\sigma_{i}\right)$. Therefore, we have that $\hat{\sigma}_{i}=0$ for all $i>d$ implying that $\operatorname{rank}\left(D_{\tau}(X)\right) \leq d$. To get equality, we need $\hat{\sigma}_{d}>0$, which happens if and only if $\sigma_{d}>\tau$.
4. Recall that for any $X, Y \in \mathbb{R}^{m \times n}$ we have

$$
\langle X, Y\rangle=\operatorname{Tr}\left(X^{T} Y\right)=\sum_{i, j} X_{i j} Y_{i j}
$$

Now

$$
\left\langle X, P_{\Omega}(Y)\right\rangle=\sum_{(i, j) \in \Omega} X_{i j} Y_{i j}=\left\langle P_{\Omega}(X), Y\right\rangle
$$

