

MTH793P Advanced Machine Learning, Semester B, 2023/24 Coursework 9

In this coursework we will prove a few statements that we used in the lecture.

Robust PCA

- 1. Let $X \in \mathbb{R}^{m \times n}$, and consider its SVD: $X = U \cdot \Sigma \cdot V^T$. Let $A, B \in \mathbb{R}^{m \times n}$ be two different matrices. Prove that $B = U^T \cdot A \cdot V$ if and only if $A = U \cdot B \cdot V^T$.
- 2. Let $X \in \mathbb{R}^{m \times n}$, and suppose that $\sigma_1, \ldots, \sigma_r$ are the singular values of X ($r = \min(m, n)$). Let $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ be two orthogonal matrices. Define $\tilde{X} = U \cdot X \cdot V^T$. Prove that X and \tilde{X} have the same singular values.
- 3. Let $X \in \mathbb{R}^{m \times n}$, and recall the definition of the singular thresholding operator

$$D_{\tau}(X) = US_{\tau}(\Sigma)V^{T},$$

where $U\Sigma V^T$ is the SVD decomposition of *X*. Prove that:

(a) $||D_{\tau}(X)||_* \leq ||X||_*$, where $||\cdot||_*$ is the nuclear norm.

(b) $\operatorname{rank}(D_{\tau}(X)) \leq \operatorname{rank}(X)$.

Under what conditions will we have $||D_{\tau}(X)||_* = ||X||_*$, rank $(D_{\tau}(X)) = \operatorname{rank}(X)$?

Matrix Completion

Let $M \in \mathbb{R}^{m \times n}$. Recall that Ω represents the indexes of known values in M, and $P_{\Omega}(\cdot)$ is the projection on these locations.

4. Let for any $X, Y \in \mathbb{R}^{m \times n}$ show that $\langle X, P_{\Omega}(Y) \rangle = \langle P_{\Omega}(X), Y \rangle$.

Solution

1. By definition, we know that $U \in \mathbb{R}^{m \times m}$ satisfies $U^T U = I_{m \times m}$, and $V \in \mathbb{R}^{n \times n}$ satisfies $V^T V = I_{n \times n}$. This implies that $U^{-1} = U^T$ and $V^{-1} = V^T$.

Suppose that $B = U^T \cdot A \cdot V$, then

$$U \cdot B \cdot V^T = U \cdot U^T \cdot A \cdot V \cdot V^T = I_{m \times m} \cdot A \cdot I_{n \times n} = A.$$

Similarly, if $A = U \cdot B \cdot V^T$, then

$$U^T \cdot A \cdot V = A = U^T \cdot U \cdot B \cdot V^T \cdot V = B$$

2. We take the SVD $X = U_X \cdot \Sigma_X V_X^T$, then the diagonal of Σ_X consists of $\sigma_1, \ldots, \sigma_r$. Now

 $\tilde{X} = U \cdot X \cdot V^T = (U \cdot U_X) \cdot \Sigma_X \cdot (V \cdot V_X)^T.$

Note that $\tilde{U} = U \cdot U_X \in \mathbb{R}^{m \times m}$ statisfies

$$\tilde{U}^T \tilde{U} = (U \cdot U_X)^T \cdot (U \cdot U_X) = U_X^T \cdot (U^T \cdot U) \cdot U_X = U_X^T \cdot U_X = I_{m \times m}.$$

Similarly, $\tilde{V}^T \cdot \tilde{V} = I_{n \times n}$. Therefore,

$$ilde{X} = (U \cdot U_X) \cdot \Sigma_X \cdot (V \cdot V_X)^T$$

is the SVD decomposition of \tilde{X} , from which we conclude that the singular values are $\sigma_1, \ldots, \sigma_r$.

3. (a) Suppose that the singular values of *X* are $\sigma_1, \ldots, \sigma_r$. In that case the singular values of $D_{\tau}(X)$ are $S_{\tau}(\sigma_1), \ldots, S_{\tau}(\sigma_r)$. By the definition of S_{τ} , and since the singular values are non-negative, we know that $S_{\tau}(\sigma_i) \leq \sigma_i$. Therefore

$$||D_{\tau}(X)||_{*} = \sum_{i=1}^{r} S_{\tau}(\sigma_{i}) \le \sum_{i=1}^{r} \sigma_{i} = ||X||_{*}.$$

We have equality if and only if $S_{\tau}(\sigma_i) = \sigma_i$ for all *i*. This can happen only if $\sigma_i = 0$. In other words, this is true only if X = 0.

(b) Suppose that $\sigma_1 \ge \ldots \ge \sigma_r > 0$, $r = \min(m, n)$ are the singular values of X. If $\operatorname{rank}(X) = d$ then $\sigma_i = 0$ for all i > d. The new singular values are given by $\hat{\sigma}_i = S_{\tau}(\sigma_i)$. Therefore, we have that $\hat{\sigma}_i = 0$ for all i > d implying that $\operatorname{rank}(D_{\tau}(X)) \le d$. To get equality, we need $\hat{\sigma}_d > 0$, which happens if and only if $\sigma_d > \tau$.

4. Recall that for any $X, Y \in \mathbb{R}^{m \times n}$ we have

$$\langle X, Y \rangle = \operatorname{Tr}(X^T Y) = \sum_{i,j} X_{ij} Y_{ij}.$$

Now

$$\langle X, P_{\Omega}(Y) \rangle = \sum_{(i,j) \in \Omega} X_{ij} Y_{ij} = \langle P_{\Omega}(X), Y \rangle$$