Mathematical Tools for Asset Management Dr Melania Nica

Problem Set: Factor Models and APT

7. Consider the following two factor model for returns of three stocks:

$$
\begin{aligned}
& r_{A}=0.13+6 F_{1}+4 F_{2}+\varepsilon_{A} \\
& r_{B}=0.15+2 F_{1}+2 F_{2}+\varepsilon_{B} \\
& r_{C}=0.07+5 F_{1}-F_{2}+\varepsilon_{C}
\end{aligned}
$$

Assume that factors and epsilons have means of zero. Also, assume the factors have variances of 0.01 and uncorrelated with each other. If $\operatorname{var}\left(\varepsilon_{A}\right)=0.01, \operatorname{var}\left(\varepsilon_{B}\right)=0.04$ and $\operatorname{var}\left(\varepsilon_{C}\right)=0.02$, what are the variances of the returns of the three stocks as well as the covariances and correlations between them? What are the expected returns of the three stocks?

$$
\begin{aligned}
& \sigma_{A}^{2}=6^{2} \operatorname{var}\left(F_{1}\right)+4^{2} \operatorname{var}\left(F_{2}\right)+\operatorname{var}\left(\varepsilon_{A}\right) \\
& =36(0.01)+16(0.01)+0.01 \\
& =0.53 \\
& \sigma_{B}^{2}=2^{2} \operatorname{var}\left(F_{1}\right)+2^{2} \operatorname{var}\left(F_{2}\right)+\operatorname{var}\left(\varepsilon_{B}\right) \\
& =4(0.01)+4(0.01)+0.04 \\
& =0.12 \\
& \sigma_{C}^{2}=5^{2} \operatorname{var}\left(F_{1}\right)+(-1)^{2} \operatorname{var}\left(F_{2}\right)+\operatorname{var}\left(\varepsilon_{c}\right) \\
& =25(0.01)+1(0.01)+0.02 \\
& =0.28
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{A B} & =\operatorname{cov}\left(6 F_{1}+4 F_{2}+\varepsilon_{\mathrm{A}}, 2 F_{1}+2 F_{2}+\varepsilon_{\mathrm{B}}\right) \\
& =\operatorname{cov}\left(6 F_{1}, 2 F_{1}\right)+\operatorname{cov}\left(4 F_{2}, 2 F_{2}\right) \\
& =12 \operatorname{var}\left(F_{1}\right)+8 \operatorname{var}\left(F_{2}\right) \\
& =12(0.01)+8(0.01) \\
& =0.20
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{B C}=\operatorname{cov}\left(2 F_{1}, 5 F_{1}\right)+\operatorname{cov}\left(2 F_{2},-1 F_{2}\right) \\
& =10 \operatorname{var}\left(F_{1}\right)-2 \operatorname{var}\left(F_{2}\right) \\
& =10(0.01)-2(0.01) \\
& =0.08 \\
& \sigma_{A C}=\operatorname{cov}\left(6 F_{1}, 5 F_{1}\right)+\operatorname{cov}\left(4 F_{2},-1 F_{2}\right) \\
& =30(0.01)-4(0.01) \\
& =0.26
\end{aligned}
$$

$$
\rho_{\mathrm{AB}}=\frac{\sigma_{\mathrm{AB}}}{\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}=\frac{0.20}{\sqrt{(0.53)(0.12)}}=0.793
$$

$$
\rho_{B C}=\frac{\sigma_{B C}}{\sigma_{B} \sigma_{C}}=\frac{0.08}{\sqrt{(0.28)(0.12)}}=0.436
$$

$$
\rho_{A C}=\frac{\sigma_{A C}}{\sigma_{A} \sigma_{C}}=\frac{0.26}{\sqrt{(0.53)(0.28)}}=0.675
$$

$$
\begin{aligned}
& r_{A}=0.13+6 F_{1}+4 F_{2}+\varepsilon_{A} \\
& E\left(r_{A}\right)=0.13+6(0)+4(0)+0=0.13=13.0 \% \\
& r_{B}=0.15+2 F_{1}+2 F_{2}+\varepsilon_{B} \\
& E\left(r_{B}\right)=0.15+2(0)+2(0)+0=0.15=15.0 \% \\
& r_{C}=0.07+5 F_{1}-1 F_{2}+\varepsilon_{C} \\
& E\left(r_{C}\right)=0.07+5(0)-1(0)+0=0.07=7.0 \%
\end{aligned}
$$

8. Write out the factor equations (return of portfolio written as a function of factors) and expected returns of the following portfolios:
a. A portfolio of the three stocks in exercise 1 with $\$ 20,000$ invested in stock $A, \$ 20,000$ invested in stock B, and $\$ 10,000$ invested in stock C.
b. A portfolio consisting of the portfolio formed in part 1 of this exercise and a $\$ 3,000$ short position in stock C of exercise 1.
9. How much should be invested in each of the stocks in exercise 1 to design the pure factors portfolios or the factor tracking portfolios (Hint: factor 1 tracking portfolio has factor 1 beta=1 and factor 2 beta=0.)

Compute the expected returns of these portfolios. Then compute the risk premiums of these two portfolios.
If there exist an additional asset with the following factor equation: $r_{4}=0.08+F_{1}+\varepsilon_{4}$ does an arbitrage opportunity exists? If so, describe how you would take advantage of it
a.

Let x_{A} be the weight of stock A in the factor 1 tracking portfolio Let x_{B} be the weight of stock B in the factor 1 tracking portfolio Let x_{C} be the weight of stock C in the factor 1 tracking portfolio

$$
\begin{aligned}
& 6 x_{A}+2 x_{B}+5\left(1-x_{A}-x_{B}\right)=1 \\
& 4 x_{A}+2 x_{B}-1\left(1-x_{A}-x_{B}\right)=0 \\
& x_{A}-3 x_{B}=-4 \\
& 5 x_{A}+3 x_{B}=1 \\
& 6 x_{A}=-3
\end{aligned}
$$

Portfolio 1: $x_{A}=-\frac{1}{2}, x_{B}=\frac{7}{6}, x_{C}=\frac{1}{3}$

$$
E\left(R_{p 1}\right)=-\frac{1}{2}(0.13)+\frac{7}{6}(0.15)+\frac{1}{3}(0.07)=0.1333=13.33 \%
$$

b.

Let x_{A} be the weight of stock A in the factor 2 tracking portfolio Let x_{B} be the weight of stock B in the factor 2 tracking portfolio Let x_{C} be the weight of stock C in the factor 2 tracking portfolio

$$
\begin{gathered}
6 x_{A}+2 x_{B}+5\left(1-x_{A}-x_{B}\right)=0 \\
4 x_{A}+2 x_{B}-1\left(1-x_{A}-x_{B}\right)=1 \\
x_{A}-3 x_{B}=-5 \\
5 x_{A}+3 x_{B}=2 \\
\\
6 x_{A}=-3 \\
\\
\text { Portfolio } 2: x_{A}=-\frac{1}{2}, x_{B}=\frac{3}{2}, x_{C}=0 \\
E\left(R_{p 2}\right)=-\frac{1}{2}(0.13)+\frac{3}{2}(0.15)=0.16=16.0 \%
\end{gathered}
$$

c.

Let x_{A} be the weight of stock A in the risk free tracking portfolio Let x_{B} be the weight of stock B in the risk free tracking portfolio Let x_{C} be the weight of stock C in the risk free tracking portfolio

$$
\begin{aligned}
& 6 x_{A}+2 x_{B}+5-5 x_{A}-5 x_{B}=0 \\
& 4 x_{A}+2 x_{B}-1+x_{A}+x_{B}=0 \\
& x_{A}-3 x_{B}=-5 \\
& 5 x_{A}+3 x_{B}=1 \\
& 6 x_{A}=-4 \\
& x_{A}=-\frac{2}{3} \\
& x_{B}=\frac{13}{9} \\
& x_{C}=\frac{2}{9}
\end{aligned}
$$

Risk free rate:

$$
R_{f}=-\frac{2}{3}(0.13)+\frac{13}{9}(0.15)+\frac{2}{9}(0.07)=0.1456=14.56 \%
$$

Then the risk premiums are:

$$
\begin{aligned}
& \lambda_{1}=0.1333-0.1456=-0.0123=-1.23 \% \\
& \lambda_{2}=.16-.1456=.0144=1.44 \%
\end{aligned}
$$

