Midterm test

Question 1
(a) $\left(x^{\prime}\right)^{0}=\gamma\left(x^{0}-\frac{v}{c} x^{\prime}\right)$ with $v=|\vec{v}|$ and

$$
\begin{aligned}
& (x)^{\prime}=\gamma\left(x^{\prime}-\frac{v}{c} x^{0}\right) \quad x^{0}=c t,\left(x^{\prime}\right)^{0}=c t^{\prime} \\
& \left(x^{\prime}\right)^{2}=x^{2} \quad \text { and }\left(x^{\prime}\right)^{3}=x^{3}
\end{aligned}
$$

(b) $\frac{\partial x^{\prime d}}{\partial x^{b}}=L^{2}$, . By using $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\cosh \alpha$

$$
L^{2} b=\left(\begin{array}{cccc}
\gamma & -\gamma \frac{v}{c} & 0 & 0 \\
-\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We have $\left(x^{1}\right)^{a}=L^{2} b x^{b}$ while dual vectors transform with the inverse matrix

$$
\begin{aligned}
& \left(L^{-1}\right)_{b}^{a}=\left(\begin{array}{cccc}
\cosh \alpha & \sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& x_{a}^{\prime}=x_{b}\left(L^{-1}\right)^{b}
\end{aligned}
$$

(c) $E=Y m c^{2}$ with $Y=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} \simeq 1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8} \frac{v^{4}}{c^{4}}+\cdots$

$$
\Rightarrow \quad E \simeq m c^{2}+\frac{1}{2} m v^{2}+\frac{3}{8} m \frac{v^{4}}{c^{2}}+\cdots
$$

The first term is the rest mass energy,
the second term is the Newtonian kinetic energy,
the third term is the first relativistic correction.
We have $\frac{3}{8} m \frac{v^{4}}{c^{2}} \cdot\left(\frac{1}{2} m v^{2}\right)=\frac{3}{4} \frac{v^{2}}{c^{2}}$

$$
\text { (2) } \begin{align*}
a) & \dot{L}_{x}\left(\omega_{a} y^{a}\right)=x^{b} \partial_{b}\left(\omega_{a} y^{b}\right) \\
& =x^{b}\left(\omega_{a} \partial_{b} y^{a}+y^{a} \partial_{b} \omega_{a}\right)  \tag{1}\\
& =y^{a} \mathcal{X}_{x} \omega_{a}+\omega_{a} \dot{L}_{x} y^{a} \\
& =y^{a} X_{x} \omega_{a}+\omega_{a}\left(x^{b} \partial_{b} y^{a}-y^{b} \partial_{b} x^{a}\right)  \tag{2}\\
\Rightarrow y^{a} \dot{L}_{x} \omega_{a} & =x^{b} y^{a} \partial_{b} \omega_{a}+\omega_{a} y^{b} \partial_{b} X^{a} \\
& =y^{a}\left(X^{b} \partial_{b} \omega_{a}+\omega_{b} \partial_{a} x^{b}\right) \\
\Rightarrow \quad \dot{L}_{x} \omega_{a} & =x^{b} \partial_{b} \omega_{a}+\omega_{b} \partial_{a} x^{b}
\end{align*}
$$

b) $\mathcal{L}_{x} \omega_{a}$ can be wrilten in terns of $\nabla$ :

$$
\begin{aligned}
& X^{b} \nabla_{b} \omega_{a}+\omega_{b} \nabla_{a} X^{b}= \\
= & X^{b}\left(\partial_{b} \omega_{a}-\Gamma_{b a}^{c} \omega_{c}\right)+\omega_{b}\left(\partial_{a} x^{b}+\Gamma^{b} \alpha_{c} X^{c}\right) \\
= & X^{b} \partial_{b} \omega_{a}+\omega_{b} \partial_{a} X^{b}=\dot{E}_{x} \omega_{a}
\end{aligned}
$$

Therefore $f_{x} \omega_{a}$ is a $(0,1)$ tensor Altematively we can exphailly show that ExWa transforms as a $(0,1)$ under coondinate transfornactions:

$$
\begin{array}{r}
\mathcal{L}_{x} \omega_{a^{\prime}}=X^{b^{\prime}} \partial_{b^{\prime}} \omega_{a^{\prime}}+\omega_{b^{\prime}} \partial_{a^{\prime}} X^{b^{\prime}} \\
=\frac{\partial x^{b^{\prime}}}{\partial x^{c}} X^{c} \frac{\partial x^{d}}{\partial x^{b^{\prime}}} \partial_{d}\left(\frac{\partial x^{a}}{\partial x^{a^{\prime}}} \omega_{a}\right) \\
\quad+\frac{\partial x^{b}}{\partial x^{b}} \omega_{b} \frac{\partial x^{a}}{\partial x^{a^{\prime}}} \partial_{a}\left(\frac{\partial x^{b^{\prime}}}{\partial x^{c}} X^{c}\right) \\
=\frac{\partial x^{a}}{\partial x^{a}}\left(X^{c} \partial_{c} \omega_{a}+\omega_{c} \partial_{a} X^{c}\right)
\end{array}
$$

since $\quad \frac{\partial x^{b}}{\partial x^{c}} \frac{\partial x^{d}}{\partial x^{b^{\prime}}} \partial_{d}\left(\frac{\partial x^{a}}{\partial x^{a}}\right)=\partial_{c}\left(\frac{\partial x^{a}}{\partial x^{a}}\right)=\partial_{a^{\prime}} \delta_{c}^{a}=0$

$$
\frac{\partial x^{b}}{\partial x^{b^{\prime}}} \frac{\partial x^{a}}{\partial x^{a^{\prime}}} \partial_{a}\left(\frac{\partial x^{b \prime}}{\partial x^{c}}\right)=\frac{\partial x^{b}}{\partial x^{b^{\prime}}} \partial_{a^{\prime}}\left(\frac{\partial x^{b}}{\partial x^{c}}\right)=\frac{\partial x^{b}}{\partial x^{b^{\prime}}} \partial_{c} \delta_{a^{\prime}}^{b^{\prime}}=0
$$

(3) $d s^{2}=d \rho^{2}+\tanh ^{2} \rho d \phi^{2}$
a)

$$
\begin{aligned}
& g_{a b}=\operatorname{liag}\left(1, \tanh ^{2} p\right) \\
& g^{a b}=\operatorname{diag}\left(1, \frac{1}{\tanh ^{2} p}\right)
\end{aligned}
$$

b) Use the Euler-Zagnange equations fer the Lagrangian

$$
L=\dot{p}^{2}+\tanh ^{2} p \dot{\phi}^{2}
$$

p)

$$
\begin{aligned}
& \frac{\partial L}{\partial \rho}=\frac{2 \tanh p}{\cosh ^{2} \rho} \dot{\phi}^{2} \\
& \frac{\partial L}{\partial \dot{p}}=2 \dot{p}, \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{p}}\right)=2 \ddot{p} \\
& \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{p}}\right)-\frac{\partial L}{\partial \rho}=2 \ddot{p}-2 \tanh p \dot{\phi}^{2}=0 \\
& \Rightarrow \ddot{\cosh ^{2} p}-\frac{\tanh p}{\cosh ^{2} \rho} \dot{\phi}^{2}=0 \Rightarrow \Gamma_{\phi \phi}^{p}=-\frac{\tanh ^{\operatorname{con}^{2} p}}{}
\end{aligned}
$$

$$
\text { ф) } \begin{aligned}
& \frac{\partial L}{\partial \phi}=0 ; \\
& \frac{\partial L}{\partial \dot{\phi}}=2 \tanh ^{2} \rho \dot{\phi} ; \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{\phi}}\right)= \\
& \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \phi}\right)-\frac{\partial L}{\partial \phi}=2 \tanh ^{2} \rho \ddot{\phi}+4 \frac{\tanh ^{\cosh ^{2} \rho}}{\rho} \dot{\phi}=0 \\
& \Rightarrow \ddot{\phi}+2 \frac{1}{\tanh ^{2} \operatorname{con}^{2} \rho} \dot{\rho} \dot{\phi}=0 \Rightarrow \Gamma_{\rho \phi}^{\phi}=\Gamma_{\phi \rho}^{\phi}=\frac{1}{\sinh \rho \cosh \rho}
\end{aligned}
$$

