MTH6132 / MTH6132P: Relativity

Examiners: P. Figueras, R. Russo

The in-class assessed coursework is intended to be completed within 45 minutes.
However, you will have a period of $\mathbf{1}$ hours to complete it and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

The Euler-Lagrange equations governing the geodesics are:

$$
\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0, \quad L=g_{a b}(x) \dot{x}^{a} \dot{x}^{b}, \quad \dot{x}^{a}=\frac{d x^{a}}{d \lambda}
$$

The Christoffel symbols associated to a metric $g_{a b}$ are computed as

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right) .
$$

The covariant derivative acting on an arbitrary (k, l) tensor is given by

$$
\begin{aligned}
& \nabla_{c} T^{a_{1} \ldots a_{k}}{ }_{b_{1} \ldots b_{l}}=\partial_{c} T^{a_{1} \ldots a_{k}}{ }_{b_{1} \ldots b_{l}} \\
& +\Gamma_{c d}^{a_{1}} T^{d a_{2} \ldots a_{k}}{ }_{b_{1} \ldots b_{l}}+\cdots+\Gamma_{c d}^{a_{k}} T^{a_{1} \ldots a_{k-1} d}{ }_{b_{1} \ldots b_{l}} \\
& -\Gamma_{a b_{1}}^{d} T^{a_{1} \ldots a_{k}}{ }_{d b_{2} \ldots b_{l}}-\cdots-\Gamma_{a b_{l}}^{d} T^{a_{1} \ldots a_{k}}{ }_{b_{1} \ldots b_{l-1} d} .
\end{aligned}
$$

Question 1 [10 marks].

(a) Consider an inertial frame S^{\prime} that is boosted with respect to an inertial frame S by a constant velocity \mathbf{v} along the x^{1}-axis. Write the Lorentz transformation connecting the coordinates $\left(x^{\prime}\right)^{a}$ of S^{\prime} and the coordinates x^{a} of S (with $a=0,1,2,3$).
(b) Write down the Lorentz transformation of the previous point as a 4×4 matrix in terms of the rapidity α defined as $v / c=\tanh (\alpha)$ with $v=|\mathbf{v}|$. Write down the 4×4 matrix relating the dual vectors x_{a}^{\prime} and x_{a}.
(c) Write down the expression for the relativistic energy of a particle with speed v and expand it in the regime $v \ll c$ up to order $1 / c^{2}$. Isolate the rest mass energy, the Newtonian kinetic energy and the first relativistic correction.

Question 2 [10 marks]. Recall the definition of the Lie derivative of a vector field Y^{a} along another vector field X^{a},

$$
\mathcal{L}_{X}(Y)^{a}=X^{b} \partial_{b} Y^{a}-Y^{b} \partial_{b} X^{a}
$$

Also, recall that the Lie derivative of a scalar ϕ along X^{a} is just the usual partial derivative:

$$
\mathcal{L}_{X} \phi=X^{a} \partial_{a} \phi
$$

Given an arbitrary 1-form ω_{a},
(a) Using that $\omega_{a} Y^{a}$ is a scalar, show that

$$
\mathcal{L}_{X}(\omega)_{a}=X^{b} \partial_{b} \omega_{a}+\omega_{b} \partial_{a} X^{b} .
$$

(b) Is $\mathcal{L}_{X}(\omega)_{a}$ a $(0,1)$ tensor?

Question 3 [10 marks]. Consider the following line element:

$$
d s^{2}=d \rho^{2}+\tanh ^{2}(\rho) d \phi^{2},
$$

with $\rho>0$ and $\phi \sim \phi+2 \pi$.
(a) Identify the components of the metric tensor $g_{a b}$ and the inverse metric $g^{a b}$.
(b) Compute the Christoffel symbols.

