

MTH6132 / MTH6132P: Relativity

Examiners: P. Figueras, R. Russo

The in-class assessed coursework is intended to be completed within **45 minutes**. However, you will have a period of **1 hours** to complete it and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

The Euler-Lagrange equations governing the geodesics are:

$$\frac{d}{d\lambda} \left(\frac{\partial L}{\partial \dot{x}^a} \right) - \frac{\partial L}{\partial x^a} = 0 \,, \quad L = g_{ab}(x) \, \dot{x}^a \dot{x}^b \,, \quad \dot{x}^a = \frac{dx^a}{d\lambda}$$

The Christoffel symbols associated to a metric g_{ab} are computed as

$$\Gamma^{a}_{bc} = \frac{1}{2}g^{ad}(\partial_{b}g_{cd} + \partial_{c}g_{bd} - \partial_{d}g_{bc}).$$

The covariant derivative acting on an arbitrary (k, l) tensor is given by

$$\nabla_{c} T^{a_{1} \dots a_{k}}_{b_{1} \dots b_{l}} = \partial_{c} T^{a_{1} \dots a_{k}}_{b_{1} \dots b_{l}}$$

$$+ \Gamma^{a_{1}}_{cd} T^{da_{2} \dots a_{k}}_{b_{1} \dots b_{l}} + \dots + \Gamma^{a_{k}}_{cd} T^{a_{1} \dots a_{k-1} d}_{b_{1} \dots b_{l}}$$

$$- \Gamma^{d}_{ab_{1}} T^{a_{1} \dots a_{k}}_{db_{2} \dots b_{l}} - \dots - \Gamma^{d}_{ab_{l}} T^{a_{1} \dots a_{k}}_{b_{1} \dots b_{l-1} d}.$$

Question 1 [10 marks].

- (a) Consider an inertial frame S' that is boosted with respect to an inertial frame S by a constant velocity \mathbf{v} along the x^1 -axis. Write the Lorentz transformation connecting the coordinates $(x')^a$ of S' and the coordinates x^a of S (with a = 0, 1, 2, 3). [3]
- (b) Write down the Lorentz transformation of the previous point as a 4×4 matrix in terms of the rapidity α defined as $v/c = \tanh(\alpha)$ with $v = |\mathbf{v}|$. Write down the 4×4 matrix relating the dual vectors x'_a and x_a .
- (c) Write down the expression for the relativistic energy of a particle with speed v and expand it in the regime $v \ll c$ up to order $1/c^2$. Isolate the rest mass energy, the Newtonian kinetic energy and the first relativistic correction. [4]

Question 2 [10 marks]. Recall the definition of the Lie derivative of a vector field Y^a along another vector field X^a ,

$$\mathcal{L}_X(Y)^a = X^b \partial_b Y^a - Y^b \partial_b X^a$$

Also, recall that the Lie derivative of a scalar ϕ along X^a is just the usual partial derivative:

$$\mathcal{L}_X \phi = X^a \partial_a \phi$$

Given an arbitrary 1-form ω_a ,

(a) Using that $\omega_a Y^a$ is a scalar, show that

$$\mathcal{L}_X(\omega)_a = X^b \partial_b \omega_a + \omega_b \partial_a X^b.$$

[5]

[5]

(b) Is
$$\mathcal{L}_X(\omega)_a$$
 a (0,1) tensor?

Question 3 [10 marks]. Consider the following line element:

$$ds^2 = d\rho^2 + \tanh^2(\rho) \, d\phi^2 \,,$$

with $\rho > 0$ and $\phi \sim \phi + 2\pi$.

- (a) Identify the components of the metric tensor g_{ab} and the inverse metric g^{ab} . [5]
- (b) Compute the Christoffel symbols. [5]