MTH5131 Actuarial Statistics

Coursework 5 - Solutions

Exercise 1. 1. Assumptions:
(a) The distribution of each X_{j} depends on a parameter, denoted θ, whose value is fixed (and the same for all the X_{j} 's) but is unknown.
(b) Given θ, the X_{j} 's are independent and identically distributed.
2. $E\left[s^{2}(\theta)\right]$ is estimated by the average of the sample variances:

$$
\frac{411.19+94.23+38.6}{3}=181.34
$$

The sample mean of the $\overline{X_{i}}$ is

$$
\bar{X}=\frac{213.11+91.15+134.23}{3}=146.16
$$

So $\operatorname{var}[m(\theta)]$ is estimated by

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{3}\left(\overline{X_{i}}-\bar{X}\right)^{2}-\frac{1}{8} E\left[s^{2}(\theta)\right] \\
& =\frac{(213.11-146.16)^{2}+(91.15-146.16)^{2}+(134.23-146.16)^{2}}{2}-\frac{181.34}{8}=3802.70
\end{aligned}
$$

The credibility factor is then

$$
Z=\frac{n}{n+\frac{E\left[s^{2}(\theta)\right]}{\operatorname{var}[m(\theta)]}}=\frac{8}{8+\frac{181.34}{3802.70}}=0.994074
$$

Exercise 2. 1. $0 \leq Z \leq 1$
2. The higher the value of Z, the higher is the degree of trust placed in $\overline{X_{i}}$ compared with \bar{X} as an estimate of next year's expected aggregate claims for risk i.
Exercise 3. 1. $E\left[s^{2}(\theta)\right]$ is estimated by the average of the sample variances:

$$
\frac{4,121,280+7,299,175+3,814,001}{3}=5,078,152
$$

The sample mean of the $\overline{X_{i}}$ is

$$
\bar{X}=\frac{2,517+7,814+2,920}{3}=4,417
$$

The sample variance of the $\overline{X_{i}}$ is

$$
\frac{1}{3-1} \sum_{i=1}^{3}\left(\overline{X_{i}}-\bar{X}\right)^{2}=\frac{(2,517-4,417)^{2}+(7,814-4,417)^{2}+(2,920-4,417)^{2}}{2}=8,695,309
$$

So $\operatorname{var}[m(\theta)]$ is estimated by

$$
\frac{1}{2} \sum_{i=1}^{3}\left(\overline{X_{i}}-\bar{X}\right)^{2}-\frac{1}{4} E\left[s^{2}(\theta)\right]=8,695,309-\frac{1}{4} \times 5,078,152=7,425,771
$$

The credibility factor is then

$$
Z=\frac{n}{n+\frac{E\left[s^{2}(\theta)\right]}{\operatorname{var}[m(\theta)]}}=\frac{4}{4+\frac{5,078,152}{7,425,771}}=0.853997
$$

2. Z is an increasing function of n, the number of years of past data. If we have more than 4 years of past data, then the credibility factor will increase.
Z is a decreasing function of $E\left[s^{2}(\theta)\right]$. If $E\left[s^{2}(\theta)\right]$ increases, e.g. if the variance of the claim amounts from one or more of the risks were to increase, then the value of the credibility factor would increase.
Z is an increasing function of $\operatorname{var}[m(\theta)]$. If $\operatorname{var}[m(\theta)]$ increases,e.g. if there was greater variation between the individual sample means, then Z would increase.

Exercise 4. 1. \bar{X}_{i} is the average claims for risk i for the 5 -year period.
So the missing entry is:

$$
\bar{X}_{4}=\frac{(44+52+69+55+71)}{5}=58.2
$$

We can then calculate the other missing entry:

$$
\frac{1}{4} \sum_{j=1}^{5}\left(X_{i j}-\bar{X}_{i}\right)^{2}=\frac{1}{4}\left[(44-58.2)^{2}+\ldots+(71-58.2)^{2}\right]=132.7
$$

To find the estimates we need \bar{X}, which is:

$$
\bar{X}=\frac{1}{4} \sum_{i=1}^{4} \bar{X}_{i}=\frac{(50.4+68.4+74.0+58.2)}{4}=62.75
$$

We can then evaluate the estimates directly:

$$
\begin{gathered}
E[m(\theta)] \approx \bar{X}=62.75 \\
E\left[s^{2}(\theta)\right] \approx \frac{1}{4} \sum_{i=1}^{4} \frac{1}{4} \sum_{j=1}^{5}\left(X_{i j}-\bar{X}_{i}\right)^{2} \\
=\frac{(39.3+17.3+215.5+132.7)}{4}=101.2
\end{gathered}
$$

2. We need to find:

$$
\operatorname{var}[m(\theta)] \approx \frac{1}{3} \sum_{i=1}^{4}\left(\bar{X}_{i}-\bar{X}\right)^{2}-\frac{1}{4 \times 5} \sum_{i=1}^{4} \frac{1}{4} \sum_{j=1}^{5}\left(X_{i j}-\bar{X}_{i}\right)^{2}
$$

The second term is just $\frac{1}{5} \times E\left[s^{2}(\theta)\right]$
Putting in the required numbers gives us:

$$
\begin{gathered}
\operatorname{var}[m(\theta)] \approx \frac{1}{3} \sum_{i=1}^{4}\left(\bar{X}_{i}-\bar{X}\right)^{2}-\frac{1}{5} \times E\left[s^{2}(\theta)\right] \\
=\frac{1}{3}\left[(50.4-62.75)^{2}+\ldots+(58.2-62.75)^{2}\right]-\frac{1}{5} \times 101.2 \\
=90.33
\end{gathered}
$$

3. We can use the estimates we have calculated to find a credibility factor:

$$
\begin{aligned}
Z & =\frac{n}{n+\frac{E\left[s^{2}(\theta)\right]}{\operatorname{var}[m(\theta)]}} \\
& =\frac{5}{5+\frac{101.2}{90.33}}
\end{aligned}
$$

The credibility factor is the same for each country.
We can then use the basic credibility formula:

$$
P=Z \bar{X}_{i}+(1-Z) E[m(\theta)]
$$

to find the EBCT premiums for each country:
Country 1: $P=0.8169 \times 50.4+(1-0.8169) \times 62.75=52.66$
Country 2: $P=0.8169 \times 68.4+(1-0.8169) \times 62.75=67.37$
Country 3: $P=0.8169 \times 74.0+(1-0.8169) \times 62.75=71.94$
Country $4 P=0.8169 \times 58.2+(1-0.8169) \times 62.75=59.03$
Exercise 5. We have

$$
\overline{P_{1}}=163+189+252+199=803
$$

and similarly

$$
\overline{P_{2}}=19,353
$$

and

$$
\overline{P_{3}}=71,729
$$

For the whole portfolio, we have

$$
\bar{P}=803+19,353+71,729=91,885
$$

and

$$
\begin{aligned}
P^{*} & =\frac{1}{11}\left[803\left(1-\frac{803}{91,885}\right)+19,353\left(1-\frac{19,353}{91,885}\right)+71,729\left(1-\frac{71,729}{91,885}\right)\right] \\
& =2,891.5793
\end{aligned}
$$

The $\overline{X_{i}}$ can be calculated by

$$
\begin{gathered}
\overline{X_{1}}=\frac{\sum_{j} Y_{1 j}}{P_{1}}=\frac{14.2+15.8+22.7+19}{803}=0.089290 \\
\overline{X_{2}}=0.013791 \\
\overline{X_{3}}=0.007654
\end{gathered}
$$

For the whole portfolio, we get

$$
\bar{X}=\frac{14.2+15.8+\cdots+161+133}{91,885}=0.009660
$$

Using the summary statistics given in the problem, we can now estimate for $E[m(\theta)], E\left[s^{2}(\theta)\right]$, and $\operatorname{var}[m(\theta)]$:

$$
\begin{gathered}
E[m(\theta)]=0.009660 \\
E\left[s^{2}(\theta)\right]=\frac{1}{3 \times 3}(0.014667+0.006103+0.003979)=0.002750
\end{gathered}
$$

$$
\operatorname{var}[m(\theta)]=\frac{1}{2,891.5793}\left[\frac{1}{11}(5.106461+0.336408+0.292641)-(0.002750)\right]=0.0001794
$$

So the estimated credibility factor for Insurer B is

$$
\frac{19,353}{19,353+\frac{0.002750}{0.0001794}}=0.999208
$$

Hence the credibility premium per unit of risk volume for Insurer B is

$$
0.999208 \times 0.013791+0.000792 \times 0.009660=0.013788
$$

Assuming a risk volume in the coming year of 4,800 , the risk premium for Insurer B is $£ 66.18$ million.

