QUEEN MARY UNIVERSITY OF LONDON

1. Coursework component

Based on the Boston dataset available on the library MASS, relative to Housing Values in Suburbs of Boston. The variables of interest are:

- Y equal to medv is median value of owner-occupied homes in \$1000.
- X_1 equal to *lstat* is the lower status of the population (percent)
- X_2 equal to rm is the average number of rooms per dwelling
- X_3 equal to age is the proportion of owner-occupied units built prior to 1940

For Model 1: $Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \varepsilon_i$, where $\varepsilon_i \underset{iid}{\sim} \mathcal{N}(0, \sigma^2)$:

- (a) test the hypothesis regarding the overall regression by using the F-test
- (b) test the hypothesis regarding the parameters β_j for j = 0, 1, 2, 3 by using the t-test

For Model 2: $Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$, where $\varepsilon_i \underset{iid}{\sim} \mathcal{N}(0, \sigma^2)$:

- (c) test the hypothesis regarding overall regression and the parameters
- (d) Which is the best model?
- 2. When fitting the model

$$E[Y_{i}] = \beta_{0} + \beta_{1}x_{1,i} + \beta_{2}x_{2,i}$$

to a set of n = 25 observations, the following results were obtained using the general linear model notation:

$$\boldsymbol{X}^{t}\boldsymbol{X} = \begin{pmatrix} 25 & 219 & 10232\\ 219 & 3055 & 133899\\ 10232 & 133899 & 6725688 \end{pmatrix}, \quad \boldsymbol{X}^{t}\boldsymbol{Y} = \begin{pmatrix} 559.60\\ 7375.44\\ 337071.69 \end{pmatrix}$$
$$(\boldsymbol{X}^{t}\boldsymbol{X})^{-1} = \begin{pmatrix} 0.11321519 & -0.00444859 & -0.000083673\\ -0.00444859 & 0.00274378 & -0.000047857\\ -0.00008367 & -0.00004786 & 0.000001229 \end{pmatrix}$$

Also $Y^t Y = 18310.63$ and $\bar{Y} = 22.384$.

- (a) Find the least squares estimated $\hat{\beta}$ and hence write down the fitted model;
- (b) Use the results to construct the Analysis of Variance Table (Remember that the regression sum of squares is $\hat{\beta}^t X^t Y n\bar{y}^2$)
- 3. Based on the previous results:
 - (a) Test the null hypothesis that the overall regression is non-significant using a significance level of 5%.
 - (b) Find a 95% confidence interval for β_j with j = 0, 1, 2.