MTH793P
Advanced Machine Learning, Semester B, 2023/24
Coursework 7

Principal Component Analysis (PCA)

1. Consider the set of points in the plane:

$$
x_{1}=(4,3)^{T}, x_{2}=(-4,6)^{T}, x_{3}=(7,-2)^{T}, x_{4}=(1,1)^{T}, x_{5}=(0,-2)^{T}
$$

(a) Set up a corresponding data matrix $X \in \mathbb{R}^{2 \times 5}$.
(b) Find the principal components of X (remember to center the data points first).
(c) Compute the projections $y_{1}, \ldots, y_{5} \in \mathbb{R}^{1}$ of $x_{1}, \ldots, x_{5} \in \mathbb{R}^{2}$ on the first principal component (remember to correct for the mean).
(d) Compute the reconstructions of x_{1}, \ldots, x_{5} using the first principal components, denoted $\hat{x}_{1}, \ldots, \hat{x}_{5} \in \mathbb{R}^{2}$.
(e) In a 2D axis system, plot the following:

- The original points x_{1}, \ldots, x_{5}.
- The reconstruced points $\hat{x}_{1}, \ldots, \hat{x}_{5}$.
- The principal components (directions).

2. Consider the following points in \mathbb{R}^{5} :

$$
x_{1}=(2,3,1,0,-1)^{T}, x_{2}=(-4,2,4,4,1)^{T}, x_{3}=(-1,-1,3,9,0)^{T} .
$$

Find the projections $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2}$ of these points, that makes them uncorrelated and with maximal variance (remember to center the points first).

Solution

1. (a) The data matrix is:

$$
X=\left(\begin{array}{ccccc}
4 & -4 & 7 & 1 & 0 \\
3 & 6 & -2 & 1 & -2
\end{array}\right)
$$

(b) The mean is:

$$
\bar{x}^{T}=\frac{1}{5}((4,3)+(-4,6)+(7,-2)+(1,1)+(0,-2))=(8 / 5,6 / 5) .
$$

The centered data matrix is:

$$
X^{\prime}=X-(8 / 5,6 / 5)^{T}=\frac{1}{5}\left(\begin{array}{ccccc}
12 & -28 & 27 & -3 & -8 \\
9 & 24 & -16 & -1 & -16
\end{array}\right) .
$$

The SVD decomposition of X^{\prime} is $X^{\prime}=U \Sigma V^{T}$ where

$$
\begin{aligned}
U & =\left(\begin{array}{ccccc}
-0.8087 & -0.5882 \\
0.5882 & -0.8087
\end{array}\right), \\
\Sigma & =\left(\begin{array}{ccccc}
9.7143 & 0 & 0 & 0 & 0 \\
0 & 4.6511 & 0 & 0 & 0
\end{array}\right), \\
V & =\left(\begin{array}{ccccc}
-0.0908 & -0.6165 & -0.3752 & 0.1174 & 0.6761 \\
0.7568 & -0.1263 & 0.5664 & -0.0002 & 0.3008 \\
-0.6433 & -0.1266 & 0.7282 & 0.0455 & 0.1944 \\
0.0378 & 0.1107 & 0.0073 & 0.9912 & -0.0620 \\
-0.0606 & 0.7587 & -0.0902 & -0.0417 & 0.6409
\end{array}\right)
\end{aligned}
$$

(we dont' really need Σ and V here). The principal components are therefore

$$
\hat{u}_{1}=(-0.8087,0.5882)^{T}, \hat{u}_{2}=(-0.5882,-0.8087)^{T} .
$$

(c) The projections are given by

$$
Y=\hat{u}_{1}^{T} X^{\prime}=(-0.8820,7.3522,-6.2493,0.3676,-0.5884) .
$$

So that

$$
y_{1}=-0.8820, y_{2}-7.3522, y_{3}=-6.2493, y_{4}=0.3676, y_{5}=-0.5884 .
$$

(d) The (centered) reconstructions are given by

$$
\hat{u}_{1} Y=\hat{u}_{1} \hat{u}_{1}^{T} X^{\prime}=\left(\begin{array}{ccccc}
0.7133 & -5.9457 & 5.0537 & -0.2973 & 0.4759 \\
-0.5188 & 4.3248 & -3.6760 & 0.2162 & -0.3461
\end{array}\right) .
$$

In other words, the reconstructed points (after correcting for the mean):

$$
\hat{X}=\left(\begin{array}{ccccc}
2.3133 & -4.3457 & 6.6537 & 1.3027 & 2.0759 \\
0.6812 & 5.5248 & -2.4760 & 1.4162 & 0.8539
\end{array}\right)
$$

In other words, \hat{x}_{i} is the i-th column of \hat{X},

$$
\begin{aligned}
& \hat{x}_{1}=(2.3133,0.6812)^{T} \\
& \hat{x}_{2}=(-4.3457,5.5248)^{T} \\
& \hat{x}_{3}=(6.6537,-2.4760)^{T} \\
& \hat{x}_{4}=(1.3027,1.4162)^{T} \\
& \hat{x}_{5}=(2.0759,0.8539)^{T}
\end{aligned}
$$

(e) The red points are x_{1}, \ldots, x_{5}, the blue are $\hat{x}_{1}, \ldots, \hat{x}_{5}$, and the black lines are the principal components.

2. We first write the data matrix:

$$
X=\left(\begin{array}{ccc}
2 & -4 & -1 \\
3 & 2 & -1 \\
1 & 4 & 3 \\
0 & 4 & 9 \\
-1 & 1 & 0
\end{array}\right)
$$

The mean is $\bar{x}^{T}=\frac{1}{3}(-3,4,8,13,0)^{T}$. Therefore,

$$
X^{\prime}=\left(\begin{array}{ccc}
3.0000 & -3.0000 & 0 \\
1.6667 & 0.6667 & -2.3333 \\
-1.6667 & 1.3333 & 0.3333 \\
-4.3333 & -0.3333 & 4.6667 \\
-1.0000 & 1.0000 & 0
\end{array}\right)
$$

The matrix U in the SVD of X^{\prime} is:

$$
U=\left(\begin{array}{ccccc}
-0.3559 & -0.7867 & -0.2949 & -0.2701 & 0.3076 \\
-0.3546 & 0.2991 & -0.7930 & 0.3898 & -0.0634 \\
0.2201 & 0.3319 & -0.3832 & -0.8334 & 0.0042 \\
0.8277 & -0.3359 & -0.3691 & 0.2544 & -0.0320 \\
0.1186 & 0.2622 & 0.0318 & 0.1259 & 0.9488
\end{array}\right)
$$

The projection on the first 2 PCs is given by:

$$
Y=\hat{U}_{2} X^{\prime}=\left(\begin{array}{ccc}
-5.7308 & 0.9674 & 4.7634 \\
-1.2212 & 3.3760 & -2.1548
\end{array}\right)
$$

where

$$
\hat{U}_{2}=\left(\begin{array}{cc}
-0.3559 & -0.7867 \\
-0.3546 & 0.2991 \\
0.2201 & 0.3319 \\
0.8277 & -0.3359 \\
0.1186 & 0.2622
\end{array}\right)
$$

In other words,

$$
y_{1}=(-5.7308,-1.2212)^{T}, y_{2}=(0.9674,3.3760)^{T}, y_{3}=(4.7634,-2.1548)^{T}
$$

