MTH793P
Advanced Machine Learning, Semester B, 2023/24

Coursework 9

In this coursework we will prove a few statements that we used in the lecture.

Robust PCA

1. Let $X \in \mathbb{R}^{m \times n}$, and consider its SVD: $X=U \cdot \Sigma \cdot V^{T}$. Let $A, B \in \mathbb{R}^{m \times n}$ be two different matrices. Prove that $B=U^{T} \cdot A \cdot V$ if and only if $A=U \cdot B \cdot V^{T}$.
2. Let $X \in \mathbb{R}^{m \times n}$, and suppose that $\sigma_{1}, \ldots, \sigma_{r}$ are the singular values of $X(r=$ $\min (m, n)$). Let $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ be two orthogonal matrices. Define $\tilde{X}=U \cdot X \cdot V^{T}$. Prove that X and \tilde{X} have the same singular values.
3. Let $X \in \mathrm{R}^{m \times n}$, and recall the definition of the singular thresholding operator

$$
D_{\tau}(X)=U S_{\tau}(\Sigma) V^{T}
$$

where $U \Sigma V^{T}$ is the SVD decomposition of X. Prove that:
(a) $\left\|D_{\tau}(X)\right\|_{*} \leq\|X\|_{*}$, where $\|\cdot\|_{*}$ is the nuclear norm.
(b) $\operatorname{rank}\left(D_{\tau}(X)\right) \leq \operatorname{rank}(X)$.

Under what conditions will we have $\left\|D_{\tau}(X)\right\|_{*}=\|X\|_{*}, \operatorname{rank}\left(D_{\tau}(X)\right)=\operatorname{rank}(X)$?

Matrix Completion

Let $M \in \mathrm{R}^{m \times n}$. Recall that Ω represents the indexes of known values in M, and $P_{\Omega}(\cdot)$ is the projection on these locations.
4. Let for any $X, Y \in \mathbb{R}^{m \times n}$ show that $\left\langle X, P_{\Omega}(Y)\right\rangle=\left\langle P_{\Omega}(X), Y\right\rangle$.

