

MTH793P Advanced Machine Learning, Semester B, 2023/24 Coursework 9

In this coursework we will prove a few statements that we used in the lecture.

Robust PCA

- 1. Let $X \in \mathbb{R}^{m \times n}$, and consider its SVD: $X = U \cdot \Sigma \cdot V^T$. Let $A, B \in \mathbb{R}^{m \times n}$ be two different matrices. Prove that $B = U^T \cdot A \cdot V$ if and only if $A = U \cdot B \cdot V^T$.
- 2. Let $X \in \mathbb{R}^{m \times n}$, and suppose that $\sigma_1, \ldots, \sigma_r$ are the singular values of X ($r = \min(m, n)$). Let $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ be two orthogonal matrices. Define $\tilde{X} = U \cdot X \cdot V^T$. Prove that X and \tilde{X} have the same singular values.
- 3. Let $X \in \mathbb{R}^{m \times n}$, and recall the definition of the singular thresholding operator

$$D_{\tau}(X) = US_{\tau}(\Sigma)V^{T},$$

where $U\Sigma V^T$ is the SVD decomposition of *X*. Prove that:

(a) $||D_{\tau}(X)||_* \leq ||X||_*$, where $||\cdot||_*$ is the nuclear norm.

(b) $\operatorname{rank}(D_{\tau}(X)) \leq \operatorname{rank}(X)$.

Under what conditions will we have $||D_{\tau}(X)||_* = ||X||_*$, rank $(D_{\tau}(X)) = \operatorname{rank}(X)$?

Matrix Completion

Let $M \in \mathbb{R}^{m \times n}$. Recall that Ω represents the indexes of known values in M, and $P_{\Omega}(\cdot)$ is the projection on these locations.

4. Let for any $X, Y \in \mathbb{R}^{m \times n}$ show that $\langle X, P_{\Omega}(Y) \rangle = \langle P_{\Omega}(X), Y \rangle$.