Week 8
Lad Fricar, wo stryted to wew setetion about palynomids.

Def $(R, t, X)$ a ting.
$R[x]$ the set of polymmichs.
in ohe varido $X$

$$
\begin{aligned}
f=f(x)=c_{d} x^{d}+ & c_{d-1} x^{d-1}+\ldots \\
& +c_{1} x+c
\end{aligned}
$$

where $C_{i}^{5}$ whe elements if $R$
$\operatorname{teg}(f)=$ the (argest $n$ for which the coefficat $C_{n}$ of $X$

$$
\begin{aligned}
& f(x)=\sum_{n=0} C_{n}(t) X^{n} \\
& C_{n}(t)=0 \quad \forall n>\operatorname{teg}(t) \\
& C_{\text {ky n }(t)}(t) \neq 0 \text { at } n=\operatorname{deg}(f)
\end{aligned}
$$

Theorem 25
$R[x]$ is a ting
witt addition

$$
\begin{aligned}
& f+g=\sum_{n=0}^{\max }\left(C_{n}(f)+C_{n}(g)\right) x^{n} \\
& f g=\sum_{n=0}^{\operatorname{dg}(f)+\operatorname{deg}(g)} C_{n}(f g) x^{n} \\
& \text { where } C_{n}(f g)=\sum_{r=0}^{n} C_{r}(f) C_{n-t}(g) \\
& C_{0}(f g)=C_{0}(f) C_{0}(s) \\
& C_{1}(f g)=\sum_{r=0}^{1} C_{r}(f) C_{n-r}(g) \\
& \\
& =C_{0}(f) C_{1}(g)+C_{1}(f) C_{0}(g)
\end{aligned}
$$

$$
\begin{aligned}
C_{2}(f s)=C_{0}(f) C_{2}(g) & +C_{1}(f) C_{2}(g) \\
& +C_{2}(f) C_{0}(g)
\end{aligned}
$$

If $R$ is a ting with identity, than so is $R[x]$.

If $R$ is commative, ton so is

$$
R|x\rangle .
$$

To check that

$$
(R+0)
$$

Let $f, g \in R[x]$.
( GGALL$f+g \in R[x])$
For any $n \geq 0$, we know that

$$
\begin{aligned}
& C_{n}(f) \in R \\
& C_{n}(b) \in R
\end{aligned}
$$

Ton by $(R+0)$ for $(R, t, x)$,

$$
C_{n}|f|+C_{n}(g) \in R
$$

Thenetive $\sum_{n}\left(C_{n}(t)+C_{n}(S)\right) x^{n}$ $\in R[x]$.
$(R+1)$ I need to show

$$
\begin{aligned}
& \text { the if } f, g, h \in R[x] \text {. } \\
& \text { th } f+(b+h)=(f+g)+h
\end{aligned}
$$

For any $n \geq 0$,
we know

$$
\begin{aligned}
& \text { Ch }(f)+\left(C_{n}(g)+C_{n}(h)\right) \\
& =\left(C_{n}(f)+C_{n}(g)\right)+C_{n}(h) \\
& b_{1}(R+1) \text { for }(R,+1 x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\left.\sum_{n} C_{n}(f) x^{n}\right)}{\left.\sum_{n}\left(C_{n}(g)+C_{n}(h)\right) x^{n}+\sum_{n} \sum_{n} C_{n}(()) x^{n} x^{n}\right)} \\
& =\left(\sum_{n} C_{n}(f) x^{n}+\sum_{n} C_{n}(5) x^{n}\right) \\
& \overbrace{n}\left(C_{n}(f)+C_{n}(s) \mid x^{n}+\sum_{n} C_{n}(h) x^{n}\right.
\end{aligned}
$$

$(R+2)$ coll for the identity dement

$$
\text { w, tit }(R[x],+)
$$

In fact,

$$
\begin{aligned}
0^{\prime \prime}=\cdots O_{R} \cdot x^{n} & +0_{R} \cdot x^{n-1}+ \\
= & \cdots+O_{R} \cdot x+O_{R}
\end{aligned}
$$

Or on to RHIS are He isentity dement wisit ( $R,+$ )
would do, i.e.

$$
\begin{aligned}
& \forall f \in R[x] . \\
& f+0=0+f=f \\
& f+0=\sum_{n}(\operatorname{Cn}(f)+\operatorname{Cn}(0)) x^{n} \\
&=\sum_{n}\left(\operatorname{Cn}(f)+O_{R}\right) x^{n} \\
&(R+2) \\
&\left.\operatorname{frr}_{(R+X)}\right)=\sum_{n} \operatorname{Cn}(f) x^{n}=f
\end{aligned}
$$

Similarly

$$
\begin{aligned}
0+f & =\sum_{n}^{1}\left(C_{n}(0)+C_{n}(t)\right) x^{n} \\
& =\sum_{n}\left(0+C_{n}(f)\right) x^{n} \\
& =\sum_{n} C_{n}(f) x^{n}
\end{aligned}
$$

Combining those two

$$
f+0=0+f=f
$$

$(R+3)$ asks for the inverse of $f$ witt, "t"

Gion $f=\sum_{n} C_{n}(f) x^{n}$,
H6 inverse is

$$
g=\sum_{n}\left(-C_{n}(t)\right) x^{n}
$$

I need to check that

$$
f+g=g+f=0
$$

Intact $\quad f+g$

$$
\begin{aligned}
& =\sum C_{n}(f) x^{n}+\sum\left(-C_{n}(f)\right) x^{n} \\
& =\sum_{n}\left(C_{n}(f)+\left(-C_{n}(f)\right)\right) x^{n}
\end{aligned}
$$

$$
=\sum_{n} 0_{R} x^{n}=0
$$

$(R+3)$ for $(R, t, x)$
Similarly for $9+f=0$
$(R+4)$ calls for $f+g=g+f$
This follows from

$$
C_{n}(f)+C_{n}(g)=C_{n}(s)+C_{n}(f)
$$

given by $(R+4)$ for $(R, t, x)$
$(R \times 0)(R \times 1),(R x+)(R+x)$
ave left ak exercise !
Proper If $R$ is a ting with identity,
then $R[x]$ is not a clivisen ting
P) look ant the notes for te proof

$$
\begin{aligned}
& \text { RR Given } f, g \in R[x], \\
& \operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)
\end{aligned}
$$

$$
\begin{aligned}
f g= & C(f) C(g) \\
& + \\
& \left(C(f) C_{1}(g)+C_{1}(f) C(g)\right) X^{1} \\
& + \\
& \vdots \\
& + \\
& C_{\text {dgg }(f) \cdot} C_{d \operatorname{ds}(g)} X^{\operatorname{dos}(f)+d_{g}(g)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } \begin{aligned}
f & =\sum \operatorname{Cn}(f) x^{n} \\
g & =\sum \operatorname{Cn}(g) x^{n} \\
* \operatorname{dog}(f g) & =\operatorname{deg}(f)+\operatorname{deg}(g)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { only if } C_{\text {Legft } 1} \cdot C_{\operatorname{deg}(9)} \neq 0 \\
& \text { in } R \\
& R=\mathbb{Z}_{6} \\
& f=[2] X+[1] \text { at dotre } 1 \\
& 9=[3] x+[2] \text { is deyre } 1 \\
& f g=([2] x+[1])([3] x+[2]) \\
& =[2][3] x^{2}+[2](2] x \\
& +[1][3] x+[1][2]
\end{aligned}
$$

$$
\begin{aligned}
& =[6] x^{2}+([4]+[3]) x \\
& +[2] \\
& =[0] x^{2}+[1] x+[2]
\end{aligned}
$$

The degree of fy is just 1 ,
ie. $\quad \operatorname{deg}(f(b)<\operatorname{deg}(f)+\operatorname{deg}(g)$
This happens because even io $a, b \in R$ are both not Zero,
its product ab might be $O_{R}$
Non-examinalde remark.
A commentative ring $(R, t, x)$ which satistuss He property:

$$
\begin{aligned}
& \text { if }{ }^{\forall} a, b \in R \\
& \qquad \text { \& } a \neq O_{R}, b \neq O_{R} \\
& \text { Her } a b \neq O_{R}
\end{aligned}
$$

is called an intestal domain.

Eraunge $\mathbb{Z}_{1}$, any field.
If $R$ is an integst comain

$$
\operatorname{deg}(f g)=\operatorname{des}(f)+\operatorname{des}(g)
$$

alwarls halts
It is for this recson we will focus on $F[x]$
te Fing of paynomichs in $X$ with corfficents in a field $F$
$\operatorname{Prop} 22$ Let $(F,+, X)$ be a field

The units $F(x)^{x}$ io $F[x]$ are $F^{x}=F-\{0\}$
Hint
If $f$ is a cunt in $F[x]$ $\tan \exists g \in F(x)$
d. $f g=g f=1_{f}$
of $(F-\{03, x)$
where $I_{F}=0 x^{n}+0 x^{n-1}+\cdots+0 \cdot x$

$$
+1_{F}
$$

Af
Let $f$ bo a witt in $F(x)$.
By definition, $\exists g \in F(x)$
st. $\quad f g=g f=1$.

$$
\begin{aligned}
& \operatorname{deg}(f g)=\operatorname{dog}(1)=0 \\
& \| \in \text { byte tenant above } \\
& \operatorname{des}(f)+\operatorname{deg} g)
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{deg}(t)=\operatorname{deg}(g)=0
$$

in $f=C$ for stine

$$
\begin{aligned}
& c \in F-\{0\} \\
& \text { by Prop lt. }
\end{aligned}
$$

More precisely
if $f=C=0$, then

$$
f \cdot g=0 \neq 1
$$

in $F$. Hence $c \neq 0$

Thedem 28
Division algotithm in $F[x]$.
Rechll from Week 1 ,
given $a \in \mathbb{Z}$

$$
8 b^{\epsilon} \quad b>0 \text {, }
$$

he samu that theve exist

$$
\begin{aligned}
& q \cdot r \in \mathbb{Z} \\
& 0 \leq r<b
\end{aligned}
$$

s.t. $a=b q+r$

Let $F$ be a field

$$
\begin{gathered}
8 \quad f_{1} g \in F[x] \\
+ \\
0
\end{gathered}
$$

Then the ne exist $q, r \in F[x]$

$$
\text { s.t. } \quad f=g \cdot q+r
$$

wharve either $r=0$

$$
\text { or } \underset{(r+0)}{\lambda} \frac{\operatorname{dog}(t)<\operatorname{deg}(g)}{(\text { and } \operatorname{lgh} \text { en } \delta+<b)}
$$

Example
(1)

$$
f=x^{4}+2 x^{3}+x^{2}-4
$$

$$
\begin{equation*}
g=x^{3}-1 \tag{x}
\end{equation*}
$$

What are $q$ \& $r$ ? $q=x+2$

$$
r=x^{2}+x-2
$$

(2)

$$
\begin{aligned}
& f=x^{2}+x-2=|x+1|(x-2) \\
& g=3 x-3 \quad \text { in }(1 \mid x)
\end{aligned}
$$

What are os $r$ ?

$$
\begin{array}{r}
x^{3}-1 \sqrt{\frac{x+2 \in q}{x^{4}+2 x^{3}+x^{2}-4}} \begin{array}{r}
\frac{x^{4}-x}{2 x^{3}+x^{2}+x-4} \\
\frac{2 x^{3}-2}{p\left(x^{2}+x-2\right)} \\
r \quad \operatorname{deg}(1)=2 \\
<\operatorname{deg}(9)=\operatorname{deg}\left(x^{3}-1\right) \\
\end{array}
\end{array}
$$

$$
=\begin{aligned}
& \frac{3 x-3}{\frac{1}{3} x+3 \longleftarrow} \not \begin{array}{l}
x^{2}+x-2 \\
x^{2}-x
\end{array} \\
& \frac{2 x-2}{2 x-2} \\
& +0
\end{aligned}
$$

If you remembered that tho divisican algoritten for $\mathbb{Z}$ was the key ingredient for

Endid's alsorithm for 24, it's pusste to imagiue thet Thearem 28 can be used to do Enclid's a gorithm
fu $F[x]$
Det $f, g \in F(x)$
We shy that $g$ divides $f$
(or $g$ is a fator is $f 1$
if $\exists q \in F(x)$
st. $\quad f=g \cdot q$

$$
(=q \cdot g)
$$

$\stackrel{R k}{2}+1$ in $Q[x]$
There is no plynomid that divides this poly.

If $f$ was a polynomial diving

$$
x^{2}+1
$$

Hen $f=a x+b$

$$
\text { \& } \exists g=c x+c
$$

$(a x+b)(c x+d)$

$$
\begin{aligned}
& 11 \\
& x^{2}+1
\end{aligned}
$$

Just cheek the those are no

$$
a, b, c, d \in \mathbb{Q}
$$

tet satisfy
On the other hand.

$$
x^{2}+1 \text { in } \mathbb{C}(x)
$$

las tho factors.

$$
x^{2}+1=(x+\sqrt{-1})(x-\sqrt{-1})
$$

sb thane are pulynamicles of dogie 1 that divide $x^{2}+1$

Division of polynomial depend on the coefficient field.

RK In this example.

$$
\begin{aligned}
& \frac{1}{2}(x+\sqrt{-1}) \\
& 10^{100}(x+\sqrt{-1})
\end{aligned}
$$

all divide $x^{2}+1$.
because

$$
\begin{aligned}
& \frac{1}{2}(x+\sqrt{-1}) \cdot 2|x-\sqrt{-1}| \\
& \frac{1}{2} x+\frac{\theta^{\prime}}{2} \mathbb{C} \mathbb{C}^{2 x-2 \sqrt{-1}}
\end{aligned}
$$

For that matter, for any

$$
\begin{array}{r}
c \in \mathbb{C}-\{0\}, \\
c(x+f-1) \text { divided } x^{2}+1
\end{array}
$$

beccunce

$$
\begin{aligned}
c(x+\sqrt{-1}) \cdot & \frac{1}{c}(x-\sqrt{-1}) \\
& =x^{2}+1
\end{aligned}
$$

The units $F(x)^{x}=F^{x}$
come into the picture
muve prominutly than befure

