Correlation with						
Company	Deutsche	Volkswagen	BMW	Risk	Standard	
	Lufthansa			Premium	Deviation	
Deutsche	1	23	.58	12.00%	37.0%	
Lufthansa						
Volkswagen	23	1	18	7%	76.3%	
BMW	.58	18	1	35%	35.8%	

1) Make use of the following information about three German companies:

- a. Compute the tangency portfolio weights
- b. If the annual interest rate is 5%, what is the expected return of the tangency portfolio?

Answer:

Covariance Table:

Company	Deutsche Lufthansa	Volkswagen	BMW	Risk Premium
Deutsche Lufthansa	0.1369	-0.06493	0.076827	12.00%
Volkswagen	-0.06493	0.582169	-0.04917	7.00%
BMW	0.076827	-0.04917	0.128164	35.00%

Let K have weight x_1 on DL, x_2 on VW and $x_3 w_F$ on BMW $E(R_K) = x_1 E(R_{DL}) + x_2 E(R_{VW}) + x_3 E(R_{BMW})$

The β representation of the mean variance optimization problem $E(R_j) = r + \beta_j (E(R_K) - r)$

$$\beta_{j} = \frac{\sigma_{jK}}{\sigma_{K}^{2}}$$

This means that

$$\frac{E(R_j)-r}{\sigma_{jK}} = \frac{E(R_K)-r}{\sigma_{K}^2}$$

The ratio of risk premium of every stock and its covariance with the tangency portfolio is identical and constant for every stock and let's denote it $\frac{1}{a}$.

$$\frac{E(R_j)-r}{\sigma_{jK}} = constant = \frac{1}{a}$$

$$\sigma_{jK} = [E(R_j) - r)] \times a$$

 $\begin{array}{l} 0.1369\,x_1 - 0.0649\,x_2 + 0.07682\,x_3 = 0.12a\\ - \,0.0649\,x_1 + 0.58217\,x_2 - 0.04917\,x_3 = 0.07a\\ 0.07682\,x_1 - 0.04917\,x_2 + 0.12816\,x_3 = 0.35a \end{array}$

Together with the fact that the weights add up to 1, we have a system of 4 equations with 4 unknowns with solutions:

 $x_1 = -30.90\%$ $x_2 = 10.96\%$ $x_3 = 119.93\%$

b) The return of **Deutsche Lufthansa:** $R_1 = 12\% + 5\% = 17\%$

The return of **Volkswagen:** R2 = 7% + 5% = 12%The return of **BMW:** $R_3 = 35\% + 5\% = 40\%$

The expected return of the tangency portfolio: $-0.309 \times 0.17 + 0.1096 \times 0.12 + 1.1993 \times 0.4 = 0.44$