MATH 5105 Differential and Integral Analysis Assignment 4

1. Let $g:[a, b] \rightarrow \mathbb{R}$ be bounded. We have proved that if g is Riemann integrable on $[a, b]$, then so is g^{2}. Prove or disprove the converse: if g^{2} is Riemann integrable on $[a, b]$ then g is Riemann integrable on $[a, b]$.
2. Assume that $h:\left[a, b^{2}\right] \rightarrow \mathbb{R}$ is a continuous function and let $G:[a, b] \rightarrow \mathbb{R}$ denote the following function,

$$
G(x)=\int_{a}^{x^{2}} h(t) d t
$$

Show that G is differentiable and find its derivative.

