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4 Multiple Linear Regression Model 

4.1 Other explanatory variables 

Whenever we fit a simple linear regression model there will be some amount of variation in 
the yi that is not explained by the regression (that part of the R2 less than 100%). Part of this 
remaining variation might be other explanatory variables. A multiple linear regression model 
is one that seeks to take into account more than one explanatory variable. 

If we have 2 explanatory variables X1 and X2 and a response variable Y we can write the 
multiple linear regression model as 

𝑦 =  𝛽 + 𝛽 𝑥 +  𝛽 𝑥 + 𝜀  

For i = 1, 2, …, n observations of the form ( x1i ,  x2i , yi ) 

More generally we can have a multiple linear regression model with p – 1 explanatory 
variables X1 , X2 , … , Xp-1  which we can write either as 

𝐸[𝑦 ] =  𝜇 =  𝛽 +  𝛽 𝑥 + ⋯ +  𝛽 𝑥   

𝑣𝑎𝑟(𝑦 ) =  𝜎  for all i = 1, …, n 

𝑐𝑜𝑣 𝑦 , 𝑦 = 0 for all i ≠ j 

Or alternatively and equivalently as, 

𝑦 =  𝛽 + 𝛽 𝑥 + ⋯ +  𝛽 𝑥  +  𝜀  

𝑣𝑎𝑟(𝜀 ) =  𝜎  for all i = 1, …, n 

𝑐𝑜𝑣 𝜀 , 𝜀 = 0 for all i ≠ j 

And we usually have the additional assumption of normality which can be written as either 
𝑦  ~ 𝑁(𝜇 , 𝜎 ) or as 𝜀  ~ 𝑁(0, 𝜎 ) 

We can also write the multiple linear regression model in matrix form. This is 

Y = X 𝛃 +  𝜀 

where, 

𝒀 =

𝑦
⋮

𝑦
    the vector of responses 

𝑿 =  
1 𝑥
⋮ ⋮
1 𝑥

   the design matrix 

𝜷 =  

𝛽
⋮

𝛽
   the vector of parameters which are unknowns 
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𝜀 =

𝜀
⋮

𝜀
    the vector of random errors 

 

4.2 Least Squares estimation in the multiple regression model 

Algebraically we will find it easiest to work with the matrix form to derive the least squares 
estimates for β and then we will find that the results are the same as those found for the 
simple linear regression model in section 3 above. 

Once again to find the least squares estimators we minimise the sum of squares of residuals 
that is 

𝑆(𝜷) =  (𝑦 − (𝛽 + 𝛽 𝑥 + ⋯ +  𝛽 𝑥  ))  

or 

𝑆(𝜷) =   𝜀  

𝑆(𝜷) =  𝜀 𝜀 

The least squares estimator 𝜷 of the vector of unknown parameters 𝜷 is given by 

𝜷 =  (𝑿𝑻𝑿) 𝑿𝑻𝒚 

This is the same result as in section 3 above except that this time the identity matrix X has p 
columns for p – 1 explanatory variables whereas before it had 2 columns. 

From the work we have already done on the simple linear regression model we also know 
that: 

 𝜷 is an unbiased estimator for 𝜷 
 Var[𝜷] = 𝜎  (𝑿𝑻𝑿)  

 If Y = X 𝛃 +  𝜀 with 𝜀  ~ 𝑁(0, 𝜎 𝑰) then 𝜷 ~ 𝑁(𝜷, 𝜎  𝑿𝑻𝑿 ) 

In finding the vector of fitted values 𝒀 we can use the hat matrix H where 

𝝁 = 𝒀 = 𝑿𝜷 = 𝑿(𝑿𝑻𝑿)
−𝟏

𝑿𝑻𝒀 = 𝑯𝒀 

So 

𝑯 =  𝑿(𝑿𝑻𝑿)
−𝟏

𝑿𝑻  

And recall from section 3 that HT = H and HH = H, the property of an idempotent matrix. 

With the hat matrix we can now look at the residual vector e 

𝒆 = 𝒀 − 𝒀 = 𝒀 − 𝑯𝒀 = (𝑰 − 𝑯)𝒀 
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Then 

𝐸[𝒆] = 0 

Which we can show by: 

𝐸[𝒆] = (𝑰 − 𝑯)𝐸(𝒀) = (𝑰 −  𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻 )𝐸[𝒀] =  (𝑰 −  𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻 )𝑿𝜷 =  𝑿𝜷 −  𝑿𝜷 

Also 

𝑣𝑎𝑟(𝒆) =  𝜎 (𝑰 − 𝑯) 

Which we can show by: 

𝑣𝑎𝑟(𝒆) = (𝑰 − 𝑯)𝑣𝑎𝑟(𝒀)(𝑰 − 𝑯) =  𝜎 (𝑰 − 𝑯) =  𝜎 (𝑰 − 2𝑯 − 𝑯 ) =  𝜎 (𝑰 − 𝑯)  

 

The sum of all the elements in e is zero which is the same as the ∑ 𝑒 = 0 result we had 
before in section 2. 

The sum of squares of residuals in matrix form is eTe and 

𝒆𝑻𝒆 =  𝒀𝑻(𝑰 − 𝑯) 𝒀 

 

4.3 Analysis of Variance 

The analysis of variance identity can be used for multiple linear regression and for 
regression in matrix form in the same way that it was for simple linear regression. That is, 

Total sum of squares = Regression sum of squares + Residual sum of squares 

SST = SSR + SSE 

In matrix form the total sum of squares is 

𝑆𝑆 =  (𝑌 − 𝑌) =  𝒀𝑻𝒀 − 𝑛𝑌  

And the regression sum of squares is 

𝑆𝑆 =  (𝑌 − 𝑌) =  𝒀𝑻𝑯 𝒀 −  𝑛𝑌  

We have already seen that the residual sum of squares can be written as 

𝑆𝑆 = (𝑌 − 𝑌 ) =  𝒀𝑻(𝑰 − 𝑯) 𝒀 

It is possible to combine these to show the analysis of variance identity in matrix form and 
for multiple linear regression as we previously did with the simple linear regression model. 

We can also produce an ANOVA table for a multiple linear regression with n observations 
and p – 1 explanatory variables and hence p parameters estimated (β0 , β1 … βp-1 ) 
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The ANOVA table is again in the format we have seen before 

 

 d.f. SS MS VR 
Regression     
Residuals     
Total     

 

Where now the Regression row represents the multiple linear regression. 

Now the degrees of freedom are: 

 n – p for residuals (this is the general case of n – 2 when p = 2 in the simple linear 
regression model before) 

 p – 1 for regression (this is the general case of 1 when p = 2 in the simple linear 
regression model before) 

 n – 1 in total (as before) 

We have already given the formulae for sums of squares. Mean squares are then those 
sums of squares divided by their respective degrees of freedom. 

𝑀𝑆 =  
𝑆𝑆

𝑝 − 1
 

 

𝑀𝑆 =  
𝑆𝑆

𝑛 − 𝑝
=  𝑆  

And once again 𝑀𝑆 = 𝑆  is an unbiased estimator for 𝜎   

Then the variance ratio or F statistic becomes 

𝑉𝑅 =  
𝑀𝑆

𝑀𝑆
=  

𝑆𝑆
𝑝 − 1

𝑆
 

 

4.4 Overall test of significance of a multiple regression 

We can use the Variance Ratio in the multiple regression ANOVA table to test whether the 
overall multiple regression has significance compared to a “null model” of a constant 𝛽  plus 
some random variation 𝜀 . 

Our null hypothesis is 

𝐻 : 𝛽 =  𝛽 = ⋯ =  𝛽 = 0 

And the alternative hypothesis is that at least one of β1 , β2 , … βp-1 is not zero. 
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Our F-statistic, sometimes written F* is the variance ratio in the ANOVA table 

𝐹∗ =  

𝑆𝑆
𝑝 − 1
𝑆𝑆

𝑛 −  𝑝

=  

𝑆𝑆
𝑝 − 1

𝑆
 

Where the denominator is always an unbiased estimator of 𝜎  but the numerator is only an 
unbiased estimator of 𝜎  if the multiple regression assumptions (linear relationships, 
constant variance and normal distribution) are true. 

Under H0 we will have 𝐹∗ ≈ 1 so large values of 𝐹∗ are required to reject H0 (which is what 
we generally seek to do as we would like a model that has significance). 

The F-test here compares 𝐹∗ with the critical value of the Fisher’s-F distribution on p – 1 and 
n – p degrees of freedom where we reject H0 at 100(1 – α)% significance if 𝐹∗ >  𝐹 (𝛼). 

 

4.5 Inference about parameters in multiple regression models 

We already have the distribution of the least squares estimators of the p model parameters 

𝜷 ~ 𝑁(𝜷, 𝜎  (𝑿𝑻𝑿) ) 

So if we want the jth parameter estimator 𝛽  where j = 0, 1, …, p – 1, then 

𝛽 ~ 𝑁(𝛽  , 𝜎  𝑐 )  where 𝑐  is the jth diagonal element of  (𝑿𝑻𝑿)  where we count the 
diagonal elements 0, 1, …, p – 1 (i.e. the first diagonal element relates to 𝛽 , the second one 
to 𝛽 , and the last one to 𝛽 . 

In this way we can make inference about 𝛽  in the ways in which we did for 𝛽  in the simple 
linear regression model earlier. These are: 

 Confidence intervals for 𝛽  
 Tests of hypotheses with 𝐻 : 𝛽 = 0 versus 𝐻 : 𝛽 ≠ 0 

In line with the parameter confidence intervals we constructed in the simple linear model, 
our 100(1 – α)% confidence interval for 𝛽  is 

[𝑎, 𝑏] =  𝛽  ±  𝑡 (𝛼) 𝑆 𝑐   

The test statistic for 𝐻 : 𝛽 = 0 versus 𝐻 : 𝛽 ≠ 0 is T where, 

𝑇 =   ~ 𝑡  under H0 

We need to be very careful about the interpretation of these confidence intervals and tests 
of hypotheses. They only apply within the context of the whole p parameter model that is 
being fitted. 
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For example if we cannot reject 𝐻 : 𝛽 = 0 then: 

 This does not mean that Xj has no explanatory power, rather that it has no additional 
explanatory power compared to the p – 1 parameter model that had all of the other 
betas apart from 𝛽  

 Also this does not tell us about the model 𝑦 =  𝛽 + 𝛽 𝑥 +  𝜀  compared to the 
“null” model  𝑦 = 𝛽 + 𝜀  , rather it tells us about the role of 𝛽  within the whole p 
parameter model. 

 

4.6 Confidence Intervals for µ in multiple regression 

We might want to estimate the mean response, µ at a certain value of x. 

We already know that 𝝁 = 𝑬[𝒀] = 𝑿𝜷 

Now say we want to estimate µ0 at 𝑥 =  (1, 𝑥 ,  … 𝑥 , )  where 

 𝜇 = 𝐸[𝑌|𝑋 = 𝑥 ,  …  𝑋 = 𝑥 ,  ] 

Our point estimate is 

�̂� =  𝑥 𝜷  

With a multiple linear regression model that includes the assumption of a normal 
distribution we can develop a confidence interval for 𝜇 . 

Now, �̂� =  𝑥 𝜷 is a linear combination of the components of 𝜷 all of which are normally 
distributed therefore �̂�  must also be normal. 

𝐸[�̂� ] = 𝐸 𝑥 𝜷 =  𝑥 𝜷 =  𝜇  and 

𝑣𝑎𝑟[�̂� ] = 𝑣𝑎𝑟 𝑥 𝜷 =  𝑥 𝑣𝑎𝑟 𝜷 𝑥 =  𝜎 𝑥  (𝑿𝑻𝑿) 𝑥  

And putting all these together we have 

�̂�  ~ 𝑁(𝜇 , 𝜎 𝑥  (𝑿𝑻𝑿) 𝑥  ) from which it is straightforward to develop a 100(1 – α)% 
confidence interval for 𝜇  which is 

[𝑎, 𝑏] =  �̂�  ±  𝑡
𝛼

2
𝑆 𝑥  (𝑿𝑻𝑿) 𝑥  

 

4.7 Prediction Intervals in multiple regression 

Now say we have a new set of x observations 𝑥 =  (1, 𝑥 ,  … 𝑥 , )  but we do not yet 
have the corresponding observation for the response y0. When we predict y0 with a 
prediction interval we will need to take into account the random variation that comes with a 
new observation. 

Our point estimate for y0 is �̂�  which is the same as 𝑦  
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With our Normal distribution assumption for the yi’s we have 

𝑦  ~ 𝑁(𝜇 , 𝜎 𝑥  (𝑿𝑻𝑿) 𝑥  ) 

𝑦 − 𝜇   ~ 𝑁(0, 𝜎 𝑥  (𝑿𝑻𝑿) 𝑥  ) 

𝑦 − (𝜇 + 𝜀 )  ~ 𝑁(0, 𝜎 𝑥  (𝑿𝑻𝑿) 𝑥 +  𝜎 ) 

So 

𝑦 − 𝑦  ~ 𝑁(0, 𝜎 (1 + 𝑥  (𝑿𝑻𝑿) 𝑥 )) 

Standardising gives us 

𝑦 − 𝑦  

𝜎 (1 + 𝑥  (𝑿𝑻𝑿) 𝑥 )
~ 𝑁(0, 1) 

And replacing the unknown 𝜎  with our estimate 𝑆  gives 

𝑦 − 𝑦  

𝑆 (1 + 𝑥  (𝑿𝑻𝑿) 𝑥 )
~ 𝑡  

Which allows us to develop the 100(1 – α)% prediction interval for 𝑦  which is 

 

𝑦  ± 𝑡
𝛼

2
𝑆 (1 + 𝑥  (𝑿𝑻𝑿) 𝑥 ) 
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5 Model building 

In building a multiple regression model we have two objectives which seem to be in conflict: 

 having a model that describes the data as well as possible 
 having a model that is as simple as possible (the principle of parsimony) 

Selecting a model – or a subset of the potential explanatory variables – that gives a suitable 
balance between these objectives can be more art than science. There is no one correct 
answer. The interaction between the explanatory variables makes this even more complex 
because a combination of say three explanatory variables may explain more, or 
demonstrate better modelling properties (normal distribution, constant variance) than any 
of the three explanatory variables when used in a simple linear regression. 

So in this section we will look at a number of approaches to deciding which explanatory 
variables to keep in a multiple linear regression model. 

 

5.1 Using the F test to delete variables 

Let us say we have a multiple linear regression model with p – 1 explanatory variables and p 
parameters. With an ANOVA table we can carry out a test of the overall model and see that 
not all of the β parameters are zero and hence the multiple linear regression model has 
some significance and some explanatory power. But perhaps we could delete some of the 
explanatory variables to leave a simpler model that still contains explanatory power. 

We do this with a Subset test. We are looking to see whether the p parameter model could 
be reduced to a q parameter model (q < p).  

We are looking to see whether we can keep 𝑥 , … , 𝑥  but remove 𝑥 , … , 𝑥 . Note that 
in practice we will not necessarily be keeping variables in number order. For example in a six 
variable, 7 parameter model where we look to remove 2 variables it is not necessarily the 
case that 𝑥  and 𝑥  are the variables to be deleted first, but rather the two that contribute 
least to model significance. We will cover how to identify which variables to consider for 
deletion later. 

More specifically we are interested in whether these variables under consideration for 
deletion significantly increase the sum of squares due to regression or significantly reduce 
the sum of squares due to residuals compared with the simpler model that does not include 
them. This is sometimes referred to as the “extra sum of squares principle”. The idea is that 
we seek models that maximise the proportion of sums of squares that are due to regression 
and minimise the proportion due to residuals. 

We seek the extra sum of squares due to 𝑥 , … , 𝑥  given that 𝑥 , … , 𝑥  are already in 
the model. This can be written 𝑆𝑆(𝑥 , … , 𝑥  | 𝑥 , … , 𝑥  )  
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Extra SS = {Regression SS under the full model} – {Regression SS under the reduced model} 

and 

Extra SS = {Residual SS under the reduced model} – {Residual SS under the full model} 

Let 𝜷𝟏
𝑻 = (𝛽 , … , 𝛽 ) and 𝜷𝟐

𝑻 = (𝛽 , … , 𝛽 ) 

so that 𝜷 =  
𝜷𝟏

𝜷𝟐
 

that is we have split the parameter vector 𝜷 into one vector for the reduced model with q 
parameters and another vector with the additional p – q parameters we are considering for 
deletion. 

similarly we can split up the X matrix into X1 and X2 where X1 contains a columns of 1’s and 
then q – 1 columns with n observations for explanatory variables 𝑥 , … , 𝑥  and X2 contains 
p – q columns with n observations for explanatory variables 𝑥 , … , 𝑥 . 

Then the full model is  
Y = X 𝛃 +  𝜀 

Y = 𝑿𝟏 𝛃𝟏 + 𝑿𝟐 𝛃𝟐 + 𝜀 

and the reduced model is 

Y = 𝑿𝟏 𝛃𝟏 +  𝜀 

 

We can calculate the SSR and SSE for both the full and the reduced models. We will call 
them: 

SSRFull and SSEFull 

SSR
Red and SSE

Red 

these use the same formulae that we developed in the previous section for sums of squares 
under multiple linear regression models but with the appropriate vector 𝜷 and matrix X for 
the full / reduced model. 

Then extra sum of squares is 

SSextra  = SSR
Full - SSR

Red = SSE
Red - SSE

Full =  𝜷𝑻𝑿𝑻 𝒀 −  𝜷𝟏
𝑻

𝑿𝟏
𝑻 𝒀 in matrix form. 

Once we have calculated the extra sum of squares we need to test whether that amount is 
significant or not. We do this with a test of hypotheses. 

𝐻 : 𝛽 =  𝛽 = ⋯ =  𝛽 = 0 

𝐻 : at least one of these parameters is not zero. 

If we reject H0 then there is evidence that at least some of the additional variables 
𝑥 , … , 𝑥  are significant and should be included in the model. 
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If we cannot reject H0 then we should delete the variables 𝑥 , … , 𝑥 . 

Under H0 the test statistic F* follows a Fisher F distribution 

𝐹∗ =  

𝑆𝑆
𝑝 − 𝑞

𝑠
 

here 𝑠  is found from MSE in the full model 

and under H0  𝐹∗ ~ 𝐹  

so we reject H0 at α significance level if 𝐹∗ >  𝐹 (𝛼) 

We may set out the calculation for this test in a particular form of ANOVA table. 

Source d.f. SS MS VR = F* 
𝑥 , … , 𝑥  

𝑥 , … , 𝑥 | 𝑥 , … , 𝑥  
 

q – 1 
p – q 

𝑆𝑆(𝑥 , … , 𝑥 ) 
𝑆𝑆  

 
𝑆𝑆

𝑝 − 𝑞
 

 
𝑆𝑆
𝑝 − 𝑞

𝑠
 

Overall Regression 
Residual 

p – 1 
n – p 

𝑆𝑆  
𝑆𝑆  

 
s2 

 

Total n – 1 𝑆𝑆    
 

There are two special cases where the F test can be replaced by a t test: 

 where p – q = 1 so only one explanatory variable is being considered for deletion 
 where there is a natural ordering of the explanatory variables X1, X2, X3, … so that we 

naturally consider deleting them one at a time sequentially according to that order. 

For deleting one explanatory variable (in this case we will consider deleting Xp-1 but our one 
variable for deletion does not need to be the one with the highest subscript) our test 
statistic is 

𝑡 =  
𝛽

𝑠𝑒(𝛽 )
 

where 𝑠𝑒(𝛽 ) is the estimated standard error of the relevant beta parameter. The 
summary()function for a lm()linear model in R will include this standard error estimate 
in its output for each coefficient. 

Under 𝐻 : 𝛽 = 0, this t statistic 𝑡 ~ 𝑡  and we complete a two-sided test of t at our 
chosen level of significance. It can be shown that under the null hypothesis F* = t2. 

Where there is a natural ordering of the Xi variables, we can perform a sequence of t tests to 
consider deletion of these variables in reverse order. 

 


