III-1. S is a ring but not a field. The additive identity is $0=0 / 1(\operatorname{recall} \operatorname{gcd}(0,1)=1)$. It is not a field because even though $2=2 / 1$ is an element of S, it has no multiplicative inverse. Indeed, the multiplicative inverse has to be $1 / 2$ but this is not an element of S.

On the other hand, T is not even a ring. In fact, it is not closed in addition. While $1 / 2$ is an element of $T, 1 / 2+1 / 2=1$ is not. Since it is not a ring, it certainly is not a field (recall a field is a ring).

III-2. (a) \mathbb{Q}. (b) The set $\mathbb{Q}(\sqrt{2})$ of real numbers of the form $r+r_{2} \sqrt{2}$ where r and r_{2} range over the field \mathbb{Q} of rational numbers. (c) The set $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6})$ of real numbers of the form $r+r_{2} \sqrt{2}+r_{3} \sqrt{3}+r_{6} \sqrt{6}$ where r, r_{2}, r_{3}, r_{6} range over \mathbb{Q}. The set $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is not closed under multiplication!

III-3. For example, to check $(\mathrm{R}+\times)$, i.e. if a, b, c are complex numbers, then $(a+b) c=a c+a b$. For $* \in\{a, b, c\}$, let $*=\operatorname{Re}(*)+\operatorname{Im}(*) \sqrt{-1}$. Then

$$
a(b+c)=(\operatorname{Re}(a)+\operatorname{Im}(a) \sqrt{-1})((\operatorname{Re}(b)+\operatorname{Re}(c))+(\operatorname{Im}(b)+\operatorname{Im}(c)) \sqrt{-1})
$$

equals, by the definition of \times on \mathbb{C},
$[\operatorname{Re}(a)(\operatorname{Re}(b)+\operatorname{Re}(b))-\operatorname{Im}(a)(\operatorname{Im}(b)+\operatorname{Im}(c))]+[\operatorname{Re}(a)(\operatorname{Im}(b)+\operatorname{Im}(c))+\operatorname{Im}(a)(\operatorname{Re}(b)+\operatorname{Re}(c))] \sqrt{-1}$.
On the other hand,

$$
a b=(\operatorname{Re}(a)+\operatorname{Im}(a) \sqrt{-1})(\operatorname{Re}(b)+\operatorname{Im}(b) \sqrt{-1})
$$

is

$$
[(\operatorname{Re}(a) \operatorname{Re}(b)-\operatorname{Im}(a) \operatorname{Im}(b)]+[\operatorname{Re}(a) \operatorname{Im}(b)+\operatorname{Re}(b) \operatorname{Im}(a)] \sqrt{-1},
$$

while

$$
a c=(\operatorname{Re}(a)+\operatorname{Im}(a) \sqrt{-1})(\operatorname{Re}(c)+\operatorname{Im}(c) \sqrt{-1})
$$

is

$$
[(\operatorname{Re}(a) \operatorname{Re}(c)-\operatorname{Im}(a) \operatorname{Im}(c)]+[\operatorname{Re}(a) \operatorname{Im}(c)+\operatorname{Re}(c) \operatorname{Im}(a)] \sqrt{-1} .
$$

Combining, $a b+a c$ is
$[\operatorname{Re}(a)(\operatorname{Re}(b)+\operatorname{Re}(b))-\operatorname{Im}(a)(\operatorname{Im}(b)+\operatorname{Im}(c))]+[\operatorname{Re}(a)(\operatorname{Im}(b)+\operatorname{Im}(c))+\operatorname{Im}(a)(\operatorname{Re}(b)+\operatorname{Re}(c))] \sqrt{-1}$
which is exactly what we get for $a(b+c)$.
The computation for $(R+x)$ is similar.
III-4. It fails to satisfy ($\mathrm{R} \times+$). For example, let g and γ be the identity function (sending x to $x)$, while f sends x to x^{2}. Then $f(g+\gamma)$ sends x to $(f(g+\gamma))(x)=f((g+\gamma)(x))=f(g(x)+\gamma(x))=$ $f(x+x)=f(2 x)=4 x^{2}$, while $f g+f \gamma$ sends x to $(f g+f \gamma)(x)=(f g)(x)+(f \gamma)(x)=$ $f(g(x))+f(\gamma(x))=f(x)+f(x)=x^{2}+x^{2}=2 x^{2}$.

III-5. $R=\mathbb{Z}_{4}$. The element $[2]_{4}$ is non-zero and $[2]_{4}^{2}=\left[2^{2}\right]_{4}=[4]_{4}=[0]_{4}$.

III-6. (a) Yes. [4] is the multiplicative identity and $[4][4]=[16]=[4],[4][2]=[2]=[2][4]$ and $[4][0]=[0]=[4][0] .(\mathrm{b}) R$ is a field.

III-7. By definition, $([a]+[b])+[c]=[a+b]+[c]=[a+b+c]=[a]+[b+c]=[a]+([b]+[c])$.
III-8. By definition, $a+(-a)=0$. Multiplying b from left, the RHS becomes $0 b=0$ (see lecture notes), while the LHS becomes $(a+(-a)) b \stackrel{(\mathrm{R}+\times)}{=} a b+(-a) b$. We therefore have $a b+(-a) b=0$. Since $a b$ is an element of R, it has additive inverse $-a b$. Adding this onto both side, we have $-a b+(a b+(-a) b)=-a b+0$. By $(\mathrm{R}+1)$, the LHS becomes $(-a b+a b)+(-a) b=$ $0+(-a) b=(-a) b$ by $(\mathrm{R}+2)$, while the RHS becomes $-a b$. To put them together, we have $(-a) b=-a b$ as desired.

III-9. (a) $f+g=[4] X^{2}+([2]+[6]) X+([3]+[3])=[4] X^{2}+[6]$. (b) $f g=([2][4]) X^{3}+$ $([3][4]+[2][6]) X^{2}+([3][6]+[3][2]) X+[3][3]=[8] X^{2}+[24] X^{2}+[24] X+[9]=[1]$.

III-10. (a) Let $f=c_{m}(f) X^{m}+c_{m-1}(f) X^{m-1}+\cdots c_{1}(f) X+c(f) \in R[X]$ and $g=c_{n}(g) X^{n}+$ $c_{n-1} X^{n-1}+\cdots+c_{1}(g) X+c(g) \in R[X]$ and assume that $c_{m}(f)$ and $c_{n}(g)$ are non-zero, in which case $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$. We see that

$$
f g=c_{m}(f) c_{n}(g) X^{m+n}+\left(c_{m}(f) c_{n-1}(g)+c_{m-1}(f) c_{n}(g)\right) X^{m+n-1}+\cdots
$$

We claim that $c_{m}(f) c_{n}(f)$ is non-zero (because F is assumed to be a field). If $c_{m}(f) c_{n}(g)=0$, then multiplying both sides by $c_{m}(f)^{-1}$ (which exists in F since F is a field and $c_{m}(f)$ is a non-zero element of F) we get $c_{m}(f)^{-1} c_{m}(f) c_{n}(g)=c_{m}(f)^{-1} 0$, i.e. $c_{n}(g)=0$. This contradicts the assumption that $c_{n}(g)$ is non-zero. Therefore, $c_{m}(f) c_{n}(g)$ is non-zero. Granted, $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. (b) If (and only when) $\operatorname{deg}(f)$ is distinct from $\operatorname{deg}(g)$, then $\operatorname{deg}(f+g)=\max (\operatorname{deg}(f), \operatorname{deg}(g))$ holds. Otherwise, there is nothing conclusive we can say about $\operatorname{deg}(f+g)$. (c) $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ no longer holds if the coefficients are defined only over a ring. For example, $[2] X+[1]$ and $[3] X+[1]$ are both degree 1 polynomials in \mathbb{Z}_{6}, but their product is $([2][3]) X^{2}+([2]+[3]) X+[1]=[5] X+[1]$ of degree 1 .

III-10. See the typed-up lecture notes.
III-11. For example, let $R=\mathbb{Z}_{4}$ and define f to be the one that sends x to $[1]_{4}$ if $x=[0]_{4}$ and to $[0]_{4}$ otherwise.

