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5 Polynomials

5.1 Defining polynomials

Definition. Let R be a ring. A polynomial f in one variable X with coefficients in R is:

f = cnX n + cn−1X n−1 + · · ·+ c1X + c

where cn, cn−1, . . . , c1, c are elements of R which are often referred to as the coefficients of f .

The set of all polynomials in one variable X with coefficients in R will be denoted by R[X ].

Definition. The degree, denoted deg(f ), of a non-zero polynomial f (in one variable X ) is the
largest integer n for which its coefficient ‘cn’ of X n is non-zero.

Definition. A non-zero polynomial f = cnX n+ cn−1X n−1+ · · ·+ c1X + c of degree n is called
monic if the leading coefficient cn = 1. The zero polynomial is defined to be monic.

5.2 Polynomial rings

Theorem 25. If R is a ring, then so is R[X ] in terms of addition

(f + g)(X ) = f (X ) + g(X ) =
∑
n

(cn(f ) + cn(g))X n

and multiplication

(fg)(X ) = f (X )g(X ) =
∑
n

(∑
r

cr(f )cn−r(g)

)
X n.

If R is a ring with identity, then so is R[X ]. If R is commutative, then so is R[X ].

Proof.
• (R+0) Since cn(f ) and cn(g) are both elements of R, it follows from (R+0) for (R,+,×)

that cn(f ) + cn(g) is an element of R. Therefore
∑

n(cn(f ) + cn(g))X n ∈ R[X ].

• (R+1) Since cn(f ) + (cn(g) + cn(γ)) = (cn(f ) + cn(g)) + cn(γ) by (R+1) for (R,+,×),∑
n

cn(f )X n +
∑
n

(cn(g) + cn(γ))X n =
∑
n

(cn(f ) + (cn(g) + cn(γ)))X n

equals ∑
n

((cn(f ) + cn(g)) + cn(γ))X n =
∑
n

(cn(f ) + cn(g))X n +
∑
n

cn(γ)X n.

• (R+2) 0 =
∑

n 0X
n = · · · 0X n + · · ·+ 0X + 0 is the identity. For every n,

cn(f ) + 0 = 0 + cn(f ) = cn(f )
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holds by (R+2) for (R,+,×). Therefore
∑

n cn(f )X
n + 0 = 0 +

∑
n cn(f )X

n =
∑

n cn(f )X
n.

• (R+3) If f =
∑

n cn(f )X
n, the inverse is

∑
n(−cn(f ))X n. This is because for every n > 0

cn(f ) + (−cn(f )) = (−cn(f )) + cn(f ) = 0

holds by (R+3) for (R,+,×).

• (R+4) By (R+4) for (R,+,×), we have cn(f ) + cn(g) = cn(g) + cn(f ) and therefore∑
n

cn(f )X n +
∑
n

cn(g)X n =
∑
n

(cn(f ) + cn(g))X n

equals ∑
n

(cn(g) + cn(f ))X n =
∑
n

cn(g)X n +
∑
n

cn(f )X n.

• (R×0) Fix n. It follows from (R×0) for (R,+,×) that cr(f )cn−r(g) ∈ R for every 0 6 r 6 n.
By (R+0) for (R,+,×), we may then deduce that the coefficient cn(fg) =

∑
r cr(f )cn−r(g) of X

n

lies in R and therefore that
∑

n(
∑

r cr(f )cn−r(g))X
n ∈ R[X ].

• (R×1) To prove f (gγ) = (fg)γ, it suffices to compare the coefficients of X n. The coefficient
of X n on the LHS is

∑
r

cr(f )cn−r(gγ) =
∑
r

cr(f )

(∑
s

cs(g)c(n−r)−s(γ)

)
=
∑

cp(f )cq(g)cr(γ)

where the rightmost sum ranges over the set of all non-negative integers p, q and r satisfying p +
q+ r = n, while the coefficient on the RHS is

∑
r

cr(fg)cn−r(γ) =
∑
r

(∑
s

cs(f )cr−s(g)

)
cn−r(γ) =

∑
cp(f )cq(g)cr(γ).

• (R×+) To prove f (g + γ) = fg + f γ, it suffices to compare the coefficient of X n. The
coefficient on the LHS is∑

r

cr(f )cn−r(g + γ) =
∑
r

cr(f ) (cn−r(g) + cn−r(γ))

which is equal, by (R+×) for (R,+,×), to

∑
r

cr(f )cn−r(g)+ cr(f )cn−r(γ) =

(∑
r

cr(f )cn−r(g)

)
+

(∑
r

cr(f )cn−r(γ)

)
= cn(fg)+ cn(f γ).

• (R+×) A proof of (g + γ)f = gf + γf is similar to (R×+) and is left as an exercise. We
make appeal to (R+×) for (R,+,×) instead.
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• R[X ] is commutative when R is. If (R,+,×) is commutative, cr(f )cn−r(g) = cn−r(g)cr(f )
and therefore

cn(fg) =
∑
r

cr(f )cn−r(g) =
∑
r

cn−r(g)cr(f ) =
∑
s

cs(g)cn−s(f ) = cn(gf ).

•R[X ] has a multiplicative unit ifR does. Let 1 be the multiplicative unitR has and, by slight
abuse of notation, let 1 again denote the polynomial 1 = · · · + 0X n + · · · + 0X + 1 of degree
0 with constant term 1, i.e. the polynomial 1 with cn(1) = 0 for every n > 1 and c(1) = 1. To
establish f × 1 = 1 × f = 1, we compare the coefficients of X n for every n > 0. For n > 1, we
have

cn(f × 1) =
∑
r

cr(f )cn−r(1) = 0 + · · ·+ 0 + cn(f )c(1) = cn(f )× 1 = cn(f )

by Proposition 16, (R+2) for (R,+,×) and the fact that 1 is the multiplicative identity. Similarly,

cn(1× f ) =
∑
r

cr(1)cn−r(f ) = c(1)cn(f ) + 0 + · · ·+ 0 = cn(f ).

For n = 0, we have
c(f )c(1) = c(f )× 1 = c(f )

and
c(1)c(f ) = 1× c(f ) = c(f ).

�

Proposition 26. If (R,+,×) is a ring with identity 1, then R[X ] is not a division ring.

Proof. Suppose, firstly, that R consists only of one element– the element is necessarily the
additive identity 0 of R. It then follows that R[X ] = {0}, as f with cn(f ) = 0 for every n is
necessarily the ‘polynomial’ 0. However, this forcesR[X ] not to be a division ring as the condition
1 6= 0 does not hold.

Having dealt with the case that R consists of one element, we may assume now that R 6= {0}.
In this case, there exists a non-zero element c in R. Consider the polynomial cX of degree 1. It
suffices to prove that cX does not havemultiplicative inverse (ifR[X ]were a division ring, then any
element would have multiplicative inverse). If cX had a multiplicative inverse, then there should
be a polynomial f = cn(f )X n + · · ·+ c1(f )X + c(f ) such that f × cX = 1. However,

f × cX = (ccn(f ))X n + · · ·+ (cc1(f ))X 2 + (cc(f ))X

and comparing the constant terms, we deduce that 1 = 0. However, this would have implied that
R = {0} which we know should not occur. �

Remark. By definition, deg(f )deg(g) > deg(fg). Let f =
∑

n cn(f )X
n and g =

∑
n cn(g)X

n.
By definition, cn(f ) = for every n > deg(f ) while cn(f ) is non-zero when n = deg(f ). Similarly
for g. Since

fg =
∑
n

(∑
r

cr(f )cn−r(g)

)
X n = c(f )c(g)+(c(f )c1(g) + c1(f )c(g))X+· · ·+cdeg(f )cdeg(g)X deg(f )+deg(g),
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we see that deg(fg) 6 deg(f ) + deg(g) where the equality holds exactly when cdeg(f )cdeg(g) is non-
zero. For example, if R = Z6 and cdeg(f ) = [2] and cdeg(g) = [3], then cdeg(f )cdeg(g) = [2][3] = [6] =
[0] and therefore deg(fg) < deg(f ) + deg(g).

Remark (non-examinable). If R is a ring with the property– if any pair of elements a and
b of R are non-zero, then their product ab is again non-zero– then deg(fg) = deg(f ) + deg(g)
always holds. A commutative ring with this property is called an integral domain. One of the most
important example of an integral domain is Z. Another important example is a field. And it is for
this reason, we shall specialised the coefficient ring to be a field from now on.

Proposition 27. Let (F ,+,×) be a field. The units F [X ]× of F [X ] are F× = F − {0}.

Proof. Let f be a unit in F [X ]. Then there exists a polynomial g in F [X ] such that fg = gf = 1.
By the remark above, deg(f ) + deg(g) = deg(fg) = deg(1) = 0. Therefore deg(f ) = deg(g) = 0,
i.e. f and g are non-zero constants inF whose product is 1, in other words, f and g are units inF . �

Remark (non-examinable) The assertion of Proposition 27 holds with an integral domain in
place of F . If R is (merely) a commutative ring with identity, then the units are the group of
polynomials f with the property that c(f ) ∈ R× and cn(f ) is nilpotent (i.e. its sufficiently large
power is 0) for every n > 1. See for example https://kconrad.math.uconn.edu/blurbs/ringthe-
ory/polynomial-properties.pdf for a proof (and much more).

5.3 Polynomial division

Theorem 28 (Division algorithm in the context of the polynomial ring F [X ]). Let F be a field.
Let f and g be two polynomials in F [X ] and assume, in particular, that g is non-zero. Then there
exists polynomials q and r in F [X ] such that

f = gq+ r

where either r = 0 or deg(r) < deg(g).

Proof. We prove the theorem by induction on the degree of f .

• Suppose deg(f ) < deg(f ). Then

f = g · 0 + f

(i.e. q = 0 and r = f ) holds.

• Suppose, for any polynomial f ′ of degree < deg(f ), the assertion of the theorem holds (with
the same g!), i.e., there exists q′ and r′ in F [X ] such that

f ′ = gq′ + r′

where r′ is either 0 or deg(r′) < deg(g). The goal is to show for f (of degree deg(f )!) there are q
and r as above. By the case already dealt with above, we may assume

deg(f ) > deg(g)
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and let

f ′ = f ′(X ) = f (X )−
cdeg(f )(f )
cdeg(g)(g)

X deg(f )−deg(g)g(X ).

Then cn(f ′) = 0 for every n > deg(f ) and

cdeg(f )(f ′) = cdeg(f )(f )−
cdeg(f )(f )
cdeg(g)(g)

cdeg(g)(g) = 0.

Therefore deg(f ′) < deg(f ). By the inductive hypothesis, there exists q′ and r′ in F [X ] such that

f ′ = q′g + r′

where r′ = 0 or deg(r′) < deg(g). It therefore follows from the definition of f ′ that

f =
(
q′ +

cdeg(f )(f )
cdeg(g)(g)

X deg(f )−deg(g)

)
g + r′

as desired. �

5.4 Roots and factors

Definition. Let f and g be polynomials in F [X ]. We say that g divides f , or g is a factor of f , if
there exists a polynomial q in F [X ] such that f = gq.

Remark. One needs to be careful when it come to polynomial division. Suppose g divides f .
Then, for every unit γ in F [X ], the product gγ also divides f ! By Proposition 27, we know that
F [X ]× = F − {0}, hence this assertions amounts to saying that if g divides f , then any non-zero
constant multiple of g also divides f .

The divisibility of a polynomial depends on F :

Examples.

X+
√
−1 dividesX 2+1 inC[X ]. Indeed, (X+

√
−1)(X−

√
−1) = X 2−(

√
−1)2 = X 2+1.

On the other hand, no non-trivial polynomial inQ[X ] divides f (X ) = X 2+1 inQ[X ]! Firstly,
any degree 0 polynomial in Q[X ] divides f (X ) because a polynomial in Q of degree 0 is nothing
other than an element c of Q − {0}, hence f = c(c−1f ). Similarly, the only degree 2 polynomial
of degree 2 that divides f is f itself. Indeed, if g of degree 2 divides f , then there exists γ in Q[X ]
such that gγ = f . Since deg(g) + deg(γ) = deg(f ), then deg(γ) = 0, i.e. γ is an element of
Q− {0}. Therefore, g is forced to be γ−1f . To see that no polynomial of degree 1 inQ[X ] divides
f , it suffices to establish that X 2 + 1 does not factorises as the product (X + a)(X + b) of degree
one polynomials, i.e. there are no rational numbers a and b such that a + b = 0 and ab = 1 (by
comparing the coefficients). Suppose for contradiction that it does. It then follows from a+ b = 0
that b = −a and substituting this into ab = 1, we get −a2 = 1. Since −a2 6 0, this is a contra-
diction.
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Corollary 29. Let F be a field. Let f in F [X ] and α be an element of F . Then there exists q in
F [X ] and r in F such that

f = (X − α)q+ r.

Proof. This follows from the theorem with g = X − α. �

Corollary 30. Let f in F [X ] and α in F . The remainder of f when divided by (X −α) is f (α).
In particular, f (α) = 0 if and only if X − α is a factor of f (X ) in F [X ].

Proof. It follows from the corollary (by letting X = α) that f (α) = r. If f (α) = 0, it therefore
follows from the corollary that f = (X − α)q and X − α is a factor of f . Conversely, if X − α
is a factor of f , there exists q in F [X ] such that f = (X − α)q. Letting X = α, we deduce that
f (α) = 0. �

We may use the corollary to check if a given polynomial factorises or not factorises at all.

Example. Consider f (X ) = X 2 + 3 in F7[X ]. Then X − 2 divides X 2 + 3, Indeed,

[2]2 + [3] = [4] + [3] = [7] = [0],

i.e. f ([2]) = [0]. In fact, X + 2 also divides f as

[−2]2 + [3] = [4] + [3] = [7] = [0],

i.e. f ([−2]) = f (−[2]) = [0].

Example. The polynomial f (X ) = X 2+2 is irreducible inF5[X ], i.e. no non-trivial polynomial
inF5[X ] divides f . To see this, we observe that no polynomial of the formX−α divides f inF5[X ].
By Corollary 30, this is equivalent to checking that no α in F5 satisfy f (α) = 0. Indeed,

α [0] [1] [2] [3] [4]
f (α) [2] [3] [1] [1] [3]

Definition. LetN be a non-negative integer. An element α in F is a root of multiplicityN of
a polynomial f in F [X ], if (X − α)N is the highest power of (X − α) that divides f (X ).

5.5 The fundamental theorem of algebra

Definition. Let F be a field. We say that α is a root, or zero, of the polynomial f (X ) = cnX n +
· · ·+ c1X + c in F [X ] if f (α) = 0, i.e. cnαn + cn−1α

n−1 + · · ·+ c1α + c1X + c = 0.

Theorem 31.(The Fundamental Theorem of Algebra) Let n ≥ 1. Let c, c1, . . . , cn be complex
numbers, where cn is assumed to be non-zero. Then the polynomial cnX n+ · · ·+ c has at least one
root inside C.

Theorem32.(The FundamentalTheoremofAlgebrawithmultiplicities) Let n ≥ 1. Let c, c1, . . . , cn
be complex numbers, where cn is assumed to be non-zero. Then the polynomial f (X ) = cnX n +
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· · · + c has exactly n roots in C counted with multiplicities, i.e. there exist complex numbers
α1, . . . , αn such that

f (X ) = cn(X − αn)(X − αn−1) · · · (X − α1).

These theorems are proved, for example, by complex analysis! Needless to say, proofs are non-
examinable (and I won’t even try to spell them out either!). Look at H. A. Priestley’s ‘Introduction
to Complex Analysis’, Oxford University Press.

5.6 GCDs of polynomials

Theorem 33.

• Any two polynomials f and g have a greatest common divisor in F [X ].

• The gcd of two polynomials in F [X ] can be found by Euclid’s algorithm.

• If gcd(f , g) = γ (a polynomial in F [X ]), then there exist p, q in F [X ] such that

fp+ gq = γ;

these polynomials p and q can also be found from the extended Euclid’s algorithm.

Proof. Non-examinable. Similar to the proof in the setting of Z though. �

Examples.
• Let f = X 4 + 1 and g = X 2 + X in Q[X ]. What is gcd(f , g)? Since

X 4 + 1 = (X 2 − X + 1)(X 2 + X ) + (−X + 1)
X 2 + X = (−X − 2)(−X + 1) + 2

−X + 1 =
1

2
(−X + 1) · 2 + 0,

the gcd is 1 (not 2!) since gcd is defined to be monic. Note that if 2 is a common divisor, any
F×-multiple of 2 is also a common divisor. Because gcd is defined to be monic, we are forced to
choose 1, instead of 2.

To find p, q such that fp+ gq = gcd(f , g) = 1, we do something analogous to what we saw in
Euclid’s algorithm for Z. Indeed, since

2 = (X 2 + X )− (−X − 2)(−X + 1)
= (X 2 + X ) + (X + 2)((X 4 + 1)− (X 2 − X + 1)(X 2 + X ))
= (X + 2)(X 4 + 1) + (−X 3 − X 2 + X − 1)(X 2 + X )

we have

gcd(f , g) = 1 =
1

2
(X + 2)f +

1

2
(−X 3 − X 2 + X − 1)g.

• Let f = X 4 + 2X 3 + X 2 − 4 and g = X 3 − 1 in Q[X ]. What is gcd?
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X 4 + 2X 3 + X 2 − 4 = (X + 2)(X 3 − 1) + (X 2 + X − 2)
X 3 − 1 = (X − 1)(X 2 + X − 2) + (3X − 3)

X 2 + X − 2 =
1

3
(X + 2)(3X − 3) + 0

and therefore gcd(f , g) = X − 3. As before, as soon as 3X − 3 is a common divisor of f and g
in Q[X ], we know that any F×-multiple of 3X − 3 is also a common divisor. Amongst those, the
only one is monic and that is X − 1 which is the gcd.

To find p and q such that fp+ gq = gcd(f , g), we see that

3X − 3 = (X 3 − 1)− (X − 1)(X 2 + X − 2)
= g − (X − 1)(f − (X + 2)g)
= (−X + 1)f + (X 2 − X − 1)g.

• Let f = X 4 + [1] and g = X 2 + X in F2[X ]. What is gcd in F2[X ]?

Since X 4 + [1] = (X + [1])4 in F2[X ], we work with (X + [1])4 instead. Since g(X ) =
X (X + [1]), both f = (X + [1])4 and g = X (X + [1]) are divisible by X + [1] exactly once. Since

gcd(
f

X + [1]
,

g
X + [1]

) = gcd((X + [1])3,X ) = 1,

the gcd is X + [1]. Alternatively, we may follow ‘Euclid’s algorithm’:

(X + [1])4 = ((X + [1])2 + (X + [1]) + [1])(X 2 + X ) + (X + [1])
X 2 + X = X (X + [1]) + 0.

and conclude that gcd(f , g) = X + [1] in F2[X ]. To find p, q, we simply see that

gcd(f , g) = X+[1] = 1·(X+[1])4−((X+[1])2+(X+[1])+[1])(X 2+X ) = 1·f+(X 2+X+1)g.

5.7 Power series rings (non-examinable)

Definition. Let R be a ring. A power series f in one variable X with coefficients in R is:

f = c + c1X + · · ·+ cnXN + · · · =
∑
n

cnX n

where cn, for every n, is an element of R.

The set of all power series in one variable X with coefficients in R will be denoted by R[[X ]].
This is a ring with addition and multiplication defined similarly to the one for R[X ].

What is the difference between R[X ] and R[[X ]]? For example, 1 − X is not a unit in R[X ]
and it is a unit in R[[X ]] as

(1− X )(1 + X + X 2 + · · · ) = 1.
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6 Matrices

Let (R,+,×) be a ring and letM2(R) be the set of ‘matrices’(
a b
c d

)
where a, b, c, d are elements of R, together with addition(

a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c + c′ d + d′

)
and multiplication (

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + db′

)
.

Theorem 34. M2(R) is a ring. If R is a ring with identity, then so isM2(R).

Proof. Exercise. �

Remark. The additive identity, the identity elementwith respect to+ defined above, is

(
0 0
0 0

)
,

where each entry 0 is the additive identity inR as defined in (R+2). IfR is a ring with identity 1,

then

(
1 0
0 1

)
is the identity. Indeed,

(
a b
c d

)(
1 0
0 1

)
=

(
a× 1 + b× 0 a× 0 + b× 1
c× 1 + d × 0 c× 0 + d × 1

)
=

(
a b
c d

)
.

The (1, 1)-entry is a because a× 1 = a (since 1 is the element of R satisfying a× 1 = 1× a = a)
and b× 0 (by Proposition 16), therefore a× 1 + b× 0 = a+ 0 = a by (R+2) for (R,+,×).

Remark. In contrast to Theorem 25, M2(R) is never commutative, even if R is commutative.

Let us see this in an example. Let A =

(
[1] [1]
[0] [1]

)
and B =

(
[1] [1]
[1] [1]

)
be matrices in M2(F2),

where F2 is the field with two elements [0] and [1]. Following the formula above, together with
[1] + [1] = [2] = [0], we see that

AB =

(
[0] [0]
[1] [1]

)
while

BA =

(
[1] [0]
[1] [0]

)
.

Proposition 35 If (R,+,×) is a ring with identity but is not a ring with the property that for
every elements a, b in R, the product is always ab = 0, thenM2(R) is neither commutative nor a
division ring.

Remarks. An example of those rings excluded is the ring (G, ∗,×) given by a group (G, ∗)with
multiplication a × b = e for all a, b in G . A field is an example of those rings considered in the
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proposition.

Proof. The assumption amounts to the existence of elements a, b in R such that ab is not 0 (the
additive identity). By Proposition 16, neither a nor b is 0. We use these two elements to prove the
assertions of the proposition.

Following the definition of multiplication in matrices, we see that(
a 0
0 0

)(
0 b
0 0

)
=

(
0 ab
0 0

)
and (

0 b
0 0

)(
a 0
0 0

)
=

(
0 0
0 0

)
and therefore the ring is not commutative.

To show thatM2(R) is not a division ring, we show that

(
0 b
0 0

)
does not have a multiplicative

inverse, i.e. there is no matrix A in M2(R) that satisfies the relation A
(
0 b
0 0

)
=

(
0 b
0 0

)
A =(

1 0
0 1

)
. Suppose, for contradiction, that such a matrix A exists. In which case, sinceM2(R) is a

ring (Theorem 34), it follows from (R×1) that

A
[(

0 b
0 0

)(
a 0
0 0

)]
=

[
A
(
0 b
0 0

)](
a 0
0 0

)
holds. However, the LHS equals

A
(
0 0
0 0

)
=

(
0 0
0 0

)
while the RHS equals (

1 0
0 1

)(
a 0
0 0

)
=

(
a 0
0 0

)
.

Since a is not 0, this is a contradiction. ThereforeM2(R) is not a division ring.�
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