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The multiple linear regression model

model with p — 1 explanatory variables X;, X, ..., X, ;

Vi = Bo+ BixX1i+ o+ Bp_1Xp_1;t &
var(g;) = o?foralli=1, .., n
cov(ei, ej) = Qforalli#j

& "'N(O,O'Z)

T




The multiple linear regression model

model with p — 1 explanatory variables X;, X;, ..., X, ;

Ely;l = wi = Bo+ Bixyi + -+ Bp-1Xp—1i
var(y;) = o?foralli=1, .., n
cov(yi,yj) = 0 foralli#j

yi ~ N(ug, 0%)

T




The multiple linear regression model

Y=XB+ ¢




Multiple linear regression in R

Response variable observations in vector y
If we have four explanatory variables with their observations in vectors x1 x2 x3 x4

To construct the multiple linear regression in an R object called m1 rm (for example) and
then display the results

mlrm <- Im(y ~ x1 + x2 + x3 + x4)

summary (mlrm)

To calculate the fitted values and store them as yhat and the standardised residuals
and store them as d

vhat <- fitted(mlrm)
d <- rstandard (mlrm)




Residuals in multiple linear regression

e=Y—-Y=Y—-—HY=({-H)Y

With

Ele] =0

var(e) = o*(I — H)

The sum of the elements in e is zero as before

The sum of squares of residuals in matrix formisele = YIT(I—H)Y

T




Analysis of Variance

The analysis of variance identity still holds in multiple regression

That is

Total sum of squares = Regression sum of squares + Residual sum of squares

SS. =SS, + SS,




ANOVA table

We can produce the ANOVA table for a regression with n observations, p—1
explanatory variables and p parameters in the same format as before

d.f. SS MS VR

Regression
Residuals
Total

Now the Regression row represents the multiple linear regression




Degrees of freedom

Residuals n-p  Thisis the general case of n — 2 when we had
p = 2 in the simple linear regression model

Regression p—1 Thisis the general case of 2—-1 =1 when we

had p = 2 in the simple linear regression
model

Total n—1 As before




Mean Squares

Mean Squares are again the Sums of Squares divided by degrees of freedom

_ SSr
MSp = >*

MSg = L = §2
n—p

MSr = S? is an unbiased estimator for g2

T




Variance Ratio

The VR or F Statistic becomes

SSRp

MS —1

VR = —— = t—
MSE S

Once again we can use the VR as a test statistic in an overall test of significance
of the multiple regression model




Setting out hypotheses tests

e State the null and alternative hypotheses

e Give a formula for the test statistic

Calculate the test statistic

e State the assumption the statistic follows under HO

e Calculate or show the degrees of freedom

¢ | o State the significance level of the test

e Compare the critical value of the distribution with the test statistic [or calculate p]

e State the conclusion of the test




Overall test of significance

Does the multiple regression model have statistical significance?

Over a “null model” of constant 5, plus some random variation

Our null hypothesis is
Ho: 1= By == ,Bp—1 =0

Our alternative hypothesis is that at least one of 84, 5, ... Bp—1 is not zero

We would like to reject H,

We can use the Variance Ratio from the multiple regression ANOVA




Test F statistic

Our F statistic sometimes written F* is the variance ratio from ANOVA

SSR SSR
« _ MSp  p-1 _ p-1
MSE SSE S2

n—p

The denominator is always an unbiased estimator of g2

The numerator is only an unbiased estimator of o2 if the regression assumptions
hold true




The F test

Under H, we will have F* = 1
So large values of F* are required to reject H,

We compare F* with the critical value of the F distribution

On p—1and n—p degrees of freedom

We reject H, at 100(1 — a)% significance

tF* > EP (@)




Inference about parameters in multiple
regression models

We already have the distribution of the least squares parameters
B~N(B o?(XTX) )
Now consider the jt" parameter estimator ,5’\] wherej=0,1,..,p-1

) 2
Bi~ N(Bj,o° ¢jj)
Where:
-1
° ¢jjis the jth diagonal element of (XTX)
o Counting the p diagonal elements 0, 1, ..., p—1
° So the first diagonal element relates to 3, the nextto 1, ..., the last to 8,




Inference about g;

With this normal distribution for g; we can make inference about g; in the same
way that we did for g, in the simple linear regression model

e Confidence intervals for f3;

e Tests of hypotheses with Hy: B; = O versus Hy: 5; # 0




Inference about g;

Our 100(1 — a)% confidence interval for f; is

[Cl, b] — ,8] + tn_p(C() SZC]‘]‘
The test statistic for Hy: ; = 0 versus Hy: B; # 0 is T where

T = b tp—p under Hy

/2..
Sc”




Need to be careful here

Care needed with the interpretation of these tests of hypothesis
They only apply within the context of the whole p parameter model

If we cannot reject Hy: 8; = 0 then

e This does not mean that X; has no explanatory power

e rather that it has no additional explanatory power compared to the p — 1 parameter
model that had all of the other betas apart from f;

e Also this does not tell us about the model y; = By + Bjxj; + &

e rather it tells us about the role of 8; within the whole p parameter model




Estimating the mean response

To estimate the mean response, p at a certain value of X
n=E[Y]=XP

Now if we want to estimate a particular yg at xo = (1, x19 ... xp_ljo)T
uo = E[Y[X, = X1,0 = Kp-1 = xp—l,O]

And our point estimate is

o—xoﬁ




Confidence intervals for u,

Using the normal distribution assumption

Ay = ngi is a linear combination of the components of f all of which are
normally distributed therefore (i, must also be normal

Eldo] = E|x{B| = x5B = uo

var[fy] = var|xIB | = xfvar(B)x, = a2} (XTX)_le

Therefore fIg ~ N (Ug, 0%x4 (XTX)_le )

T




Confidence intervals for u,

From fig ~ N(ug, 0%x} (XTX)_lxo )

It is straightforward to develop a 100(1 — a)% confidence interval for u,

la,b] = [y £ th—p (%) \/Szxg (XTX)~1x,

T




Prediction intervals

If we have a new set of x observations xo = (1, x19 ... xp_l,O)T
But we do not yet have the corresponding response observation y,

We can construct a 100(1 — a)% prediction interval
o> Which takes account of the random variation that comes with a new observation

Our point estimate for y, is iy = ¥,

And we have our normal distribution assumption for the y;’s




Developing the prediction interval

9o ~ N(to, o%xF (XTX) " xo)
Yo — to ~N(0,0%x (XTX)_lxo )
9o — (ot €9) ~N(0,0%xf (X7X) 'x + 0?)

9o — yo ~ N(0,52(1 + xT (XTX) " x,))

T




Developing the prediction interval

Standardising this normal distribution gives

ﬁO_yO ~ N(O, 1)
\/02(1+x(7; XTx)"1xy)

And replacing the unknown g with our estimate S? gives

Yo—Yo
\/52(1+x(7; (XTX)~1x4)

~ thop




Prediction interval

Our 100(1 — a)% prediction interval for y, is

Vo T th—p (%) \/52(1 +xI (XTX)"1x4)




Confidence intervals in R

The R commands remain the same as those used in simple linear regression.

If a multiple regression model called model has been run using 1m () and
existing observations are saved in a data frame called x obs then

To construct a 99% confidence interval and store it in conf use

conf <- predict (model, newdata = data.frame (x=x obs),
interval = ‘confidence’, level = 0.99)

If no level = isspecified, R will default to 95%




Prediction intervals in R

The R commands to create prediction intervals are very similar
If new observations are saved in a data frame called x new then
To construct a 90% prediction interval and store it in pred use

pred <- predict (model, newdata = data.frame (x=x new),
interval = ‘prediction’, level = 0.90)

You can display the first 6 rows of pred with the command head (pred)
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