Lest Muncay,
Def A field is a * commentate* $\operatorname{ting}\left(F_{1}+X\right)$

- $\left(F_{1}+\right)$ is a group with identity element 0
- (F-\{0\} , X ) ~ i s ~ a ~ g r o w n ~ with identity element 1

$$
\begin{aligned}
& (G-2) \\
& \left.f_{w}(F-20), x\right)
\end{aligned}
$$

- $1 \neq 0$
$R k^{I f} 1=0$
ten for any $a \in F$ cistuntion. Pappl9.

$$
a=a \times 1 \stackrel{\varepsilon}{=} a \times 0=0
$$

benue 1 is
He matipractio identity
To sum up, if $1=0$
Hen $F=\{0\}$
Therefore the last field axiom
stups it happening
Anoter way of sayis this is thet
\{0\} can NOT be a field

$$
\begin{aligned}
& 0+0=0 \\
& 0 \times 0=0
\end{aligned}
$$

Example $\mathbb{C}$

$$
(R,+, x)
$$

Def A divisian Fing is a Fing tant satitions all tho field axioms
(iuclude $1 \neq 0$ ) except $a b=b a \quad \forall a \cdot b$

Example Hamilton's quaternicus

$$
\begin{gathered}
\{c \cdot 1+C(p) p+C(q) q+C(r) r\} \\
C \cdot C(p), C(q), C(r) \in \mathbb{R}
\end{gathered}
$$

1, p, q, r are syombls. striject to te relaticus

$$
\begin{aligned}
& 1 \cdot p=p \cdot 1=p \\
& 1 \cdot q=q \cdot 1=q \\
& 1 \cdot r=r \cdot 1=r \\
& p^{2}=q^{2}=r^{2}=p q r=-1
\end{aligned}
$$

A division ting is an example of a ring that is not a field.


But we've seen mure examples
of tinges that are not fields ( are nut division Fingsl

Recall $\mathbb{Z}_{n}=$ tho set of equiv
n: a prosituo clash en whir. $\equiv$ infer $n$ $m d n$

- $(\mathbb{Z} n, t)$ is a ablimp with identity $[0]$
- $\left(\mathbb{Z}_{n},+, X\right)$ is a commatatico
ting with identity
- If $n$ is a príne nuber pi tem $\mathbb{Z p}_{0}$ is a field. Fp

RE If $n$ is NOI a prind nuber, the $\mathbb{Z n}$ is NOT a field (Thinkchant $\mathbb{Z}_{6}$ !)
§ Polynomials
Deft Let $\left(R_{1}+, x\right)$ be a ting A polpmominal $f$ in one variable $X$ with coefficients in $R$ is

$$
\begin{aligned}
f=f(x)=C_{n} x^{n} & +C_{n-1} x^{n-1} \\
& +\cdots+C_{1} x+C_{0}
\end{aligned}
$$

where $C_{i} \in R$
The ci's are called tho coeffst of $f$

Example $R=2 \quad x^{2}+17 x+1$

$$
R=\mathbb{C} \quad x^{3}+(1+i) x^{2}+i
$$

Def Let $R[x]$ denote tho set of all plymomiss in one variable with coffees in $R$.
 ${ }^{n} R=\mathbb{R}^{r} \quad$ real memes $)$
D ff Cion $f \in R[x]$.
tho degree of $f, \operatorname{deg}(f)$, is defined to be the largest $n$ for which the cosfficut $C_{n}$ of $x^{n}$


The $\operatorname{deg}(f)=n$.
Example $\operatorname{des}\left(x^{3}+x^{2}+1\right)=3$

Theverem 25 Let $\left(R_{1}, t, x\right)$ be a fring Then $R[x]$ is a ting wirit ndilition: $f+g$

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& \max (\operatorname{dog}(f) \cdot \operatorname{deg}(b)) \\
& =\sum_{n=0}\left(c_{n}(f)+c_{n}(g)\right) X^{n} \\
& \text { Ex }\left(x^{5}+x^{3}+x+1\right) \\
& +\left(x^{2}+x+2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \cdot x^{5}+0 \cdot x^{4}+1 \cdot x^{3}+1 \cdot x^{2}+2 x \\
& = \\
& c_{5}(f)+c_{5}(g) \\
& c_{4}(f)+c_{4}(g) \\
& 1+0
\end{aligned} 0^{\prime \prime} \quad c_{3}(f)+c_{3}(g)+3
$$

Inaltiptication $f \times g$ (or $f g l$

$$
\begin{aligned}
& (f g)(x)=f(x) g(x) \\
= & \sum_{n=0}^{\operatorname{dog}(f)+\operatorname{deg}(g)} \operatorname{Cn}(f g) x^{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{n}(f g)=\sum_{r=0}^{n} C_{r}(f) C_{n-r}(g) \\
& =C_{0}(f) C_{n}(g)+C_{1}(f) C_{n-1}(g) \\
& +C_{2}(f) C_{n-2}(g)+\cdots+ \\
& +\cdots+C_{n-1}(f) C_{1}(g)+C_{n}(f) C_{0}(g)
\end{aligned}
$$

If $R$ is a Hing with identity, Hem so is $R[x]$.

If $R$ is commutatio. Hem so is RTx]

Prout Possibly in Moneay
Prop20 If $(R,+x)$
is a Fing with identity,
then $R[x]$ is Nos a divísian Fing.

