
Since S and T are basis vectors adapted to a coordinate system, their commutator
vanishes,

[S, T ] = 0 ) Sb
rbT

a = T b
rbS

a .

Keeping this in mind, we can explicitly compute the relative acceleration of geodesics:

Aa = T b
rbV

a = T b
rb(T

c
rcS

a)

= T b
rb(S

c
rcT

a)

= (T b
rbS

c)(rcT
a) + T b Sc

rbrcT
a

= (T b
rbS

c)(rcT
a) + T b Sc(rcrbT

a +Ra

dbc
T d)

= (T b
rbS

c)(rcT
a) + Sc

rc(T
b
rbT

a)� (Sc
rcT

b)rbT
a +Ra

dbc
T d T b Sc

= Ra

dbc
T d T b Sc . (5.7)

The first line is just the definition of Aa and the second line comes from [S, T ] = 0. The
third line is just the Leibniz rule; the fourth line replaces a double covariant derivative
by derivatives in the opposite order plus the Riemann tensor. The fifth line uses again
the Leibniz rule (in the opposite order than usual), and then we cancel two identical
terms and notice that the term T b

rbT a vanishes because T a is the tangent vector to a
geodesic. The result,

Aa = rTrTS
a = Ra

dbc
T d T b Sc , (5.8)

is the geodesic deviation equation. It expresses that the relative acceleration between two
neighbouring geodesics is proportional to the curvature. Physically the acceleration of
neighbouring geodesics is interpreted as a manifestation of the gravitational tidal forces.

5.3 Symmetries of the curvature tensor

In general, a tensor of rank 4 has 44 = 256 components (in spacetime). Symmetries,
if present, are important because they reduce the number of independent components.
Lowering the index in the definition of the Riemann tensor one obtains

Rabcd = gaf (@c�
f
bd � @d�

f
bc) + �aec�

e
bd � �aed�

e
bc,

where
Rabcd = gafR

f
bcd, �abd = gaf�

f
bd.

Now, since Rabcd is a tensor, it should have the same symmetries in all frames. Accord-
ingly, choose a locally inertial frame for which the Christo↵el symbols vanish. For these
coordinates one has then that

R
âb̂ĉd̂

= g
âf̂
(@ĉ�

f̂

b̂d̂
� @

d̂
�f̂

b̂ĉ
).

where we use hatted indices â, . . . to denote that these expressions are only valid in locally
inertial coordinates. Recalling that

�abc =
1
2 (@bgca + @cgba � @agbc)

one obtains
R

âb̂ĉd̂
= 1

2

�
@
b̂
@ĉgâd̂ + @â@d̂gb̂ĉ � @â@ĉgb̂d̂ � @

b̂
@
d̂
gâĉ

�
,

from where it is easy to read the symmetries of the tensor. It can be checked that

Rabcd = �Rbacd, Rabcd = �Rabdc, Rabcd = Rcdab.
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Furthermore,
Rabcd +Radbc +Racdb = 0 ) Ra[bcd] = 0.

These symmetries amount to 236 constraints, so Rabcd has only 20 non-zero components.

5.4 Bianchi identities, the Ricci and Einstein tensors

Recall that in a locally inertial frame one had that

R
ĉd̂âb̂

= 1
2

�
@â@d̂gĉb̂ � @â@ĉgb̂d̂ � @

b̂
@
d̂
gĉâ + @

b̂
@ĉgâd̂

�
.

Di↵erentiating with respect to x̂e one obtains

@êRĉd̂âb̂
= 1

2@ê
�
@â@d̂gĉb̂ � @â@ĉgb̂d̂ � @

b̂
@
d̂
gĉâ + @

b̂
@ĉgâd̂

�
.

Now consider the sum of the cyclic permutations of the first three indices:

@êRĉd̂âb̂
+ @ĉRd̂êâb̂

+ @
d̂
R

êĉâb̂

= 1
2

�
@ê@â@d̂gĉb̂ � @ê@â@ĉgb̂d̂ � @ê@b̂@d̂gĉâ + @ê@b̂@ĉgâd̂

+ @ĉ@â@êgd̂b̂ � @ĉ@â@d̂gb̂ê � @ĉ@b̂@êgd̂â + @ĉ@b̂@d̂gâê

+ @
d̂
@â@ĉgêb̂ � @

d̂
@â@êgb̂ĉ � @

d̂
@
b̂
@ĉgêâ + @

d̂
@
b̂
@êgâĉ

�

= 0 . (5.9)

Since this is an equation between tensors, it is true in any coordinate system, even though
we derived it in a particular one. By the antisymmetry property Rcdab = �Rdcab, we can
re-write this equation as

reRcdab +rdRecab +rcRdeab = 0 ) r[eRcd]ab = 0 . (5.10)

This tensorial equation is valid in all frames and is called the Bianchi identity. One could
have derived it by directly taking the covariant derivative of the Riemann tensor.

The Ricci tensor

The Ricci tensor is obtained by contracting the first and third indices of the Riemann
tensor:

Rab ⌘ gcdRcadb = Rc
acb

= @c�
c

ab
� @a(�

c

cb
) + �d

ab
�c

cd
� �d

ca�
c

db
.

(5.11)

Remark 1. Because of the symmetries of the Riemann tensor one has that the Ricci
tensor is symmetric. That is,

Rab = Rba .

Remark 2. Other contractions of the Riemann tensor vanish or give ±Rab. For example
Rc

cab = 0 since Rcdab is anti-symmetric in c and d. Also,

Rc
abc = �Rc

acb = �Rab ,

and so on.

Remark 3. One can show that

�a

ab
= @b ln

p
|g| ,

where g = det(gab). Therefore, we have the following formula for the Ricci tensor:

Rab = @c�
c

ab
� @a@b ln

p
|g|+ �c

ab
@c ln

p
|g|� �d

ca�
c

db
. (5.12)
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The Ricci scalar

The Ricci scalar is defined as the contraction of the indices of the Ricci tensor:

R ⌘ gabRab = gacgbdRabcd.

The Einstein tensor

In the next computations recall that rcgab = 0 and rcgab = 0 since the Christo↵el
connection is metric compatible. Contract twice the Bianchi identity (5.10),

0 = gbdgae(reRcdab +rcRdeab +rdRecab)

= r
aRca �rcR+r

bRcb , (5.13)

or

r
aRac =

1

2
rcR . (5.14)

Note that, unlike the partial derivative, it makes sense to raise an index on the covariant
derivative of a tensor because it is another tensor and due to the metric compatibility.
We define the Einstein tensor as

Gab ⌘ Rab �
1

2
Rgab , (5.15)

We then see that the twice-contracted Bianchi identity (5.14) is equivalent to

r
aGab = 0 . (5.16)

Remark 1. The Einstein tensor, which is symmetric due to the symmetry of the Ricci
tensor and the metric, has 10 independent components and it will play a crucial role in
general relativity.

Remark 2. By construction, the Einstein tensor is divergence free.

The Weyl tensor

The Ricci tensor and the Ricci scalar contain all the information about the possible
contractions of the Riemann tensor. The remaining information, namely the trace-free
parts, are captured by the Weyl tensor. This tensor is defined as the Riemann tensor
with all the contractions removed. In an n-dimensional manifold, one has

Cabcd = Rabcd �
2

n� 2
(ga[cRd]b � gb[cRd]a) +

2

(n� 1)(n� 2)
ga[cgd]bR ,

and hence
Ca

bac = 0 .

Remark 1. By construction, the Weyl tensor has the same symmetries as the Riemann
tensor:

Cabcd = C[ab][cd] , Cabcd = Ccdab , Ca[bcd] = 0 .

Remark 2. The Weyl tensor is only defined in three or more dimensions; in three
dimensions it vanishes identically.

Remark 3. A very important property of the Weyl tensor is that it is invariant under
conformal transformations of the metric, gab ! ⌦(x)2 gab, where ⌦(x) is an arbitrary
function of the spacetime coordinates.
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Example: curvature tensors of the 2-sphere. Consider a round 2-sphere of radius
a with metric

ds2 = a2(d✓2 + sin2 ✓ d�2) .

The non-zero Christo↵el symbols are given by

�✓

��
= � sin ✓ cos ✓ ,

��

✓�
= ��

�✓
= cot ✓ .

Given the symmetries of the Riemann tensor, the only non-trivial component (up to
symmetries) is:

R✓

�✓�
= @✓�

✓

��
� @��

✓

✓�
+ �✓

✓b
�b

��
� �✓

�b
�b

✓�

= (sin✓ � cos✓)� (0) + (0)� (� sin ✓ cos ✓)(cot ✓)

= sin2 ✓ .

Lowering the first index gives

R✓�✓� = g✓cR
c

�✓�

= g✓✓ R
✓

�✓�

= a2 sin2 ✓ .

The Ricci tensor is then computed from Rab = gcdRcadb, which gives

R✓✓ = g��R�✓�✓ = 1

R✓� = R�✓ = 0

R�� = g✓✓ R✓�✓� = sin2 ✓ .

Finally, the Ricci scalar is given by,

R = gabRab = g✓✓R✓✓ + g��R�� =
2

a2
.

Note that the scalar of curvature, i.e., the Ricci scalar, decreases as the radius of the
sphere increases. In more general cases, we will sometimes refer to the “radius of curva-
ture” of a manifold as providing a length scale over which the curvature varies; the larger
the radius of curvature, the smaller the curvature is.
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Chapter 6

General Relativity

6.1 Towards the Einstein equations

There are several ways of motivating the Einstein equations. The most natural is perhaps
through considerations involving the Equivalence Principle. In gravitational fields there
exist local inertial frames in which Special Relativity is recovered. The equation of motion
of a free particle in such frames is:

d2xa

d⌧2
= 0. (6.1)

Relative to an arbitrary (accelerating frame) specified by x0a = x0a(xb), the latter be-
comes:

d2x0a

d⌧2
+ �abc

dx0b

d⌧

dx0c

d⌧
= 0,

where

�abc =
@x0a

@xd
@2xd

@x0b@x0c
.

Here the �abc are the “fictitious” terms that arise due to the non-inertial nature of the
frame. Now, due to the Equivalence Principle the latter implies that locally gravity is
equivalent to acceleration and this in turn gives rise to non-inertial frames. The main
idea of General relativity is to argue that gravitation as well as inertial forces should be
described by appropriate �abc’s!

Clearly (6.1) is not a tensorial equation since it is not left invariant upon changing

frame: although dx
a

d⌧
is a well-defined vector, d

2
x
a

d⌧2
is not. Note that we can use the chain

rule d

d⌧
= dx

b

d⌧

@

@xb to write

d2xa

d⌧2
=

dxb

d⌧
@b

✓
dxa

d⌧

◆

Now it is clear how we can generalise equation (6.1) to curved space: we simply replace
the partial derivative by a covariant derivative:

dxb

d⌧
@b

✓
dxa

d⌧

◆
!

dxb

d⌧
rb

✓
dxa

d⌧

◆
=

d2xa

d⌧2
+ �a

bc

dxb

d⌧

dxc

d⌧
.

Therefore, we conclude that the generalisation of (6.1) to curved spaces is

d2xa

d⌧2
+ �a

bc

dxb

d⌧

dxc

d⌧
= 0. (6.2)
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To see that (6.2) indeed describes the motion of test particles in gravitational fields,
we can consider the Newtonian limit of this equation. More precisely, in Newtonian limit
we assume that particles are moving slowly compared to the speed of light, gravitational
fields are weak (so it can be considered as a perturbation of flat space) and that the
gravitational field is static. Taking the proper time ⌧ as an a�ne parameter along the
geodesic, “moving slowly” means

dxi

d⌧
⌧

dt

d⌧
.

where i = 1, 2, 3 denotes the spatial coordinates. In this limit, the geodesic equation
(6.2) becomes

d2xa

d⌧2
+ �a

00

✓
dt

d⌧

◆2

= 0. (6.3)

Since the gravitational field is assumed to be static, all t-derivatives of gab vanish (@0gab =
0) and the relevant Christo↵el symbols simplify

�a
00 =

1
2g

ab(@0gb0 + @0g0b � @bg00)

= �
1
2g

ab@bg00 (6.4)

Furthermore, since the field is weak, one may adopt a local coordinate system in which

gab = ⌘ab + hab, |hab| ⌧ 1. (6.5)

From the definition of the inverse metric, gabgbc = �a
b
, we find that to first order in hab,

gab = ⌘ab � hab

where hab = ⌘ac⌘bdhcd. Substituting this into (6.4) and expanding to first order in hab,
one has that

�a
00 = �

1
2⌘

ad@dh00.

Therefore, in this limit the geodesic equation (6.3) becomes:1

d2xi

d⌧2
=

1

2

✓
dt

d⌧

◆2

@ih00, (6.6a)

d2t

d⌧2
= 0, as @0h00 = 0. (6.6b)

From (6.6b) it follows that dt

d⌧
is a constant. Also, from

dxi

d⌧
=

dxi

dt

dt

d⌧
,

it follows that
d2xi

d⌧2
=

d2xi

dt2

✓
dt

d⌧

◆2

+
dxi

dt

d2t

d⌧2
,

which in our case reduces to
d2xi

d⌧2
=

d2xi

dt2

✓
dt

d⌧

◆2

.

1Note that ⌘ij = �ij so spatial indices upstairs and downstairs are the same.
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Combining the latter with (6.6a) we obtain

d2xi

dt2
=

1

2
@ih00. (6.7)

The corresponding Newtonian result is

d2xi

dt2
= �@i� (6.8)

where � is the gravitational potential. Far from a central body of mass M at a distance
r, � is given by

� = �
GM

r
,

where G is Newton’s constant of gravitation. Comparing (6.7) and (6.8) one finds that

h00 = �2�+ constant.

However, at large distances from M one has that � ! 0 (gravity becomes negligible)
and gab ! ⌘ab (the space becomes flat). Therefore the constant must be zero and we can
conclude that

h00 = �2�. (6.9)

Substituting in (6.5) one finds
g00 = �(1 + 2�). (6.10)

Now, recall that � has dimensions of (velocity)2, [�] = [GM/R] = L2/T 2. Therefore one
has that �/c2 at the surface of the Earth is ⇠ 10�9, on the surface of the Sun is ⇠ 10�6,
at the surface of a white dwarf is ⇠ 10�4 while at the surface of a neutron start is ⇠ 10�2.
On the other hand, at horizon of a black hole �/c2 ⇠ 1. It follows that in most cases
the distortion produced by gravity in the spacetime metric gab is very small, except near
black holes.

We have argued that free particles (subject only to gravitational forces) move along
geodesics. In the Newtonian limit of the geodesic equation we have shown how the
Christo↵el symbols �a

bc are associated with gravitational forces and, in turn, how the
spacetime metric gab can be associated with the gravitational potential. However, we do
not know yet what equation the metric gab has to satisfy. To motivate it, note that the
gravitational potential in the Newtonian theory satisfies

r
2� = 4⇡G⇢, (6.11)

where ⇢ is the mass density. The relativistic analogue of this equation should be tenso-
rial and of second order in the derivatives of the metric. To take this analogy further,
consider two neighbouring particles moving in a gravitational field with a potential �
with coordinates xi(t) and xi(t) + ⇠i(t) respectively, with ⇠i(t) small and i = 1, 2, 3. The
equations of motion are then given:

ẍi = �
@�(x)

@xi

and

ẍi + ⇠̈i = �
@�(x)

@xi
� ⇠j

@2�

@xi@xj
+O(⇠2).
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Subtracting the two last equations:

⇠̈i = �⇠j
@2�

@xi@xj
.

This is the relative acceleration of two test particles separated by a 3-vector ⇠i – the
second derivative of the potential gives the tidal forces. This is in analogy to the geodesic
deviation equation:

rV rV ⇠
a = Ra

cdbV
cV d⇠b,

provided that one identifies

�⇠j
@2�

@xi@xj
and Ra

cdbV
cV d⇠b.

This identification would make clear the relation between gravity and geometry – note
that the Riemann tensor involves second derivatives of the metric tensor.

6.2 Principles employed in General Relativity

The main idea underlying General Relativity is that matter –including energy– curves
spacetime (assumed to be a smooth Lorentzian manifold). This in turn a↵ects the motion
of particles and light rays, postulated to move on timelike and null geodesics of the man-
ifold, respectively. These ideas are understood in conjunction with the main principles
of General Relativity, listed below.

(1) Equivalence Principle. In small enough regions of spacetime, the laws of physics
reduce to those of Special Relativity; it is impossible to detect the existence of a
gravitational field by means of local experiments.

(2) Principle of General Covariance. This states that laws of Nature should have
the same mathematical form in any reference frame; hence, they should be tensorial.

(3) Principle of minimal gravitational coupling. This is used to derive the Gen-
eral Relativity analogues of Special Relativity results. According to this principle,
one should change

⌘ab ! gab, @ ! r.

For example, in Special Relativity the equations for a perfect fluid are given by:

T ab = (⇢+ p)V aV b
� p ⌘ab,

@aT
ab = 0.

In General Relativity these should be changed to:

T ab = (⇢+ p)V aV b
� p gab,

raT
ab = 0.

(4) Correspondence principle. General relativity must agree with Special Relativity
in absence of gravitation and with Newtonian gravitational theory in the case of
weak gravitational fields and in the non-relativistic limit (slow speed).
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6.2.1 The Einstein equations in vacuum

In vacuum, such as in the outside of a body in empty space, one has that the mass density
⇢ vanishes and the equation for the Newtonian potential becomes:

r
2� = 0.

The Laplace equation involves an object with two indices, namely @
2
�

@xi@xj . Therefore, one
would guess that the gravitational field equations involve a symmetric geometric object
with two indices, and hence the same number of components as the metric gab, arising
from a contraction of the Riemann tensor (since the Riemann has two derivatives of the
metric). The Ricci tensor is such a tensor and hence one would be tempted to guess that
the gravitational field equations are

Rab = 0. (6.12)

These are indeed the correct equations for gravity in absence of matter fields and they
are known as the Einstein vacuum field equations. The equations (6.12) form a set of ten
nonlinear, second order partial di↵erential equations for the components of the metric
tensor gab. These are hard to solve, except simple settings with a high degree of symmetry.

Remark 1. One of the simplest solutions to the vacuum equations is the Minkowski
metric. Expressing the metric gab locally as ds2 = �dt2 + dx2 + dy2 + dz2, we see that
all the Christo↵el symbols vanish, from which Rab = 0 is trivially satisfied.

Remark 2. The most general form of the vacuum equations which is tensorial and
depends linearly on second derivatives of the metric is:

Rab + ⇤gab = 0,

where ⇤ is the so-called Cosmological constant. Outside Cosmology, ⇤ is usually taken
to be zero.

6.2.2 The (full) Einstein Equations

Matter in relativity is described by a (0,2) tensor Tab called the energy-momentum tensor.
Therefore, in the presence of matter, one would be tempted to generalise (6.12) to

Rab = Tab

for some coupling constant . In fact, Einstein did suggest this equation. However, this
equation is problematic for the following reason. The mass-energy is conserved and this is
described by r

aTab = 0, consistent with the minimal coupling principle that generalises
of the equations motion in the Special Relativity case. However, in general raRab 6= 0.
Therefore, consistency with the conservation of mass-energy implies that we have to
equate Tab with a curvature tensor with vanishing divergence. There is only one (0,2)
tensor, constructed from the Ricci tensor, which is automatically conserved: the Einstein
tensor

Gab = Rab �
1

2
Rgab

which always satisfies raGab = 0. Therefore, one is led to propose

Gab = Tab.
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as the field equation for the spacetime metric gab in the presence of matter-energy sources.
Note, however, that since r

agab = 0, we could also have written

Gab + ⇤gab = Tab. (6.13)

These are the complete Einstein field equations for the metric gab of a spacetime.
Note that the Einstein equations are the simplest compatible with the Equivalence

Principle, but they are not the only ones. In general, the Einstein field equations are
extremely complicated set of non-linear partial di↵erential equations. In some simple
settings, analytic solutions may be found. These include:

(i) The vacuum spherically symmetric static case (the Schwarzschild spacetime).

(ii) The weak field case (gravitational waves).

(iii) The isotropic and homogeneous case (Cosmology).

We will study cases (i) and (ii) in the following sections.

6.2.3 Newtonian limit

To determine the value of the constant  one needs to make contact with the Newtonian
theory. In this subsection we are going to see how (6.13) (with ⇤ = 0) reproduces the
Poisson equation for the gravitational potential in the Newtonian limit. From now on,
we will set ⇤ = 0 unless otherwise stated.

Contracting both sides of (6.13) we find R = �T , which allows us to rewrite (6.13)
as

Rab = 
�
Tab �

1
2 T gab

�
(6.14)

We want to show that this equation reduces to Newtonian gravity in the weak-field,
time-independent and slowly moving limit. For simplicity, we consider dust as the source
of energy-momentum, for which

Tab = ⇢Ua Ub ,

where Ua is the dust four-velocity, and ⇢ is the energy density in the rest frame. The
“dust” we are considering is a massive body, such as the Sun. Without loss of generality,
we can work in the dust rest frame, in which

Ua = (U0, 0, 0, 0) .

We can fix U0 using the normalisation condition gabUaU b = �1. In the weak field limit,
from (6.9) and (6.10) we can write

g00 = �1 + h00 , g00 = �1� h00 . (6.15)

Then, to first order in hab we get

U0 = 1 + 1
2 h00 .

In fact, we are already assuming that ⇢ is small. Therefore, the contributions from h00
to Tab coming from the U0 terms will be of higher order, and we can simply take U0 = 1,
and correspondingly U0 = �1. Then,

T00 = ⇢ ,
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and all the other components of the stress-energy tensor Tab vanish. In this limit, the
rest energy ⇢ = T00 will be much larger than the other terms in Tab, so we can focus
on the a = b = 0 component of (6.14). To the lowest non-trivial order, the trace of the
energy momentum tensor is

T = gabTab = g00T00 = �T00 = �⇢ .

and hence, the 00-component of (6.14) becomes

R00 =
1
2  ⇢ . (6.16)

Now we need to express the lhs of this equation in terms of the metric. To do so, we
have to compute R00 = Ra

0a0 = Ri
0i0. We have

Ri
0j0 = @j�

i
00 � @0�

i
j0 + �i

ja�
a
00 � �i

0a�
a
j0 .

Note that the second term in this expression is a time derivative, which vanishes for
static fields. The third and fourth terms are of the form (�)2, and since the Christo↵els
� are of first order in the metric perturbation hab, these terms are of higher order and
can be neglected. Therefore, to first order in hab we have Ri

0j0 = @j�i
00. From this, we

compute

R00 = Ri
0i0

= @i
⇥
1
2g

ia (@0ga0 + @0g0a � @ag00)
⇤

=�
1
2 �

ij@i@jh00

=�
1
2r

2h00 .

Then, equation (6.16) becomes
r

2h00 = � ⇢ . (6.17)

From equation (6.9) we have h00 = �2�. Comparing with the Poisson equation for New-
tonian gravity (6.11), we see that General Relativity does indeed reproduce Newtonian
gravity if we set  = 8⇡G, where G is Newton’s gravitational constant.

Having fixed the normalisation correctly to reproduce the Newtonian limit we arrive
at the final form of Einstein’s equations for general relativity:

Rab �
1
2 Rgab = 8⇡GTab . (6.18)

6.3 The Schwarzschild solution

In GR, the unique spherically symmetric vacuum solution of the Einstein equations is
the Schwarzschild metric. It is second in importance only to Minkowski space and it
corresponds to the static, spherically symmetric gravitational field in empty space sur-
rounding a (spherically symmetric) source, such as a star. As we shall see later, it also
represents a black hole.

The assumption of spherical symmetry and staticity severely constraints the form of
the line element. Firstly, assuming that the spacetime is static means that there exists a
timelike Killing vector field such that, far away from any sources, is of the form @t, which
is the canonical timelike Killing vector field in Minkowski space. Furthermore, in these
coordinates the line element is invariant under a time inversion t ! �t. The assumption
to preserve spherical symmetry implies that coordinates can be chosen such that the
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line element possesses an explicit round sphere, d⌦2
(2) = d✓2 + sin2 ✓ d�2, where (✓,�)

are the standard angular coordinates on a unit 2-sphere. Therefore, with our symmetry
assumptions, the most general line element that we can write down is of the following
form:

ds2 = �e2A(r)dt2 + e2B(r)dr2 + r2e2C(r)(d✓2 + sin2 ✓ d�2) . (6.19)

We can use our freedom to choose the coordinates to simplify (6.19) further. Defining a
new radial coordinate,

r̄ = r eC(r)
) dr̄ =

�
1 + r dC

dr

�
eC(r) dr , (6.20)

the metric (6.19) becomes

ds2 = �e2A(r)dt2 +
�
1 + r dC

dr

��2
e2(B(r)�C(r))dr̄2 + r̄2(d✓2 + sin2 ✓ d�2) , (6.21)

where r is now a function of r̄ defined by (6.20). Making the following relabelings,

r̄ ! r ,
�
1 + r dC

dr

��2
e2(B(r)�C(r))

! e2B(r) ,

the metric (6.21) becomes

ds2 = �e2A(r)dt2 + e2B(r)dr2 + r2(d✓2 + sin2 ✓ d�2) . (6.22)

This is the most general static and spherically symmetric spacetime. Note that in these
coordinates, r has a physical meaning, namely is the areal radius of the 2-spheres.

Given the form of the metric (6.22), we are now ready to solve the Einstein vacuum
equations,

Rab = 0 ,

From (6.22), we find that the only non-vanishing components of the Ricci tensor are:

Rtt = e2(A�B)
⇣
A00 +A02

�A0B0 + 2
r
A0

⌘
, (6.23)

Rrr = �A00
�A02 +A0B0 + 2

r
B0 , (6.24)

R✓✓ = e�2B
⇥
r(B0

�A0)� 1
⇤
+ 1 , (6.25)

R�� = sin2 ✓R✓✓ , (6.26)

where 0 denotes d

dr
. Having calculated the components of the Ricci tensor, we now have to

equate them to zero. Since all components have to vanish independently, we can consider
the combination

0 = e2(B�A)Rtt +Rrr =
2

r
(A0 +B0) ,

which implies A(r) = �B(r) + c, where c is a constant. We can set this constant to zero
by rescaling the time coordinate by t ! e�c t, after which we have

A(r) = �B(r) . (6.27)

Considering R✓✓ = 0, using the previous result this equation now becomes

e2A(2 r A0 + 1) = 1 ,

which is equivalent to
@r

�
r e2A

�
= 1 .
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This equation can be straightforwardly integrated to obtain

e2A(r) = 1�
RS

r
, (6.28)

where RS is an undetermined constant. Using the results (6.27) and (6.28), we find that
the spacetime metric that solves the Einstein vacuum equations is

ds2 = �

✓
1�

RS

r

◆
dt2 +

dr2

1� RS
r

+ r2
�
d✓2 + sin2 ✓ d�2

�
. (6.29)

This metric depends on a single parameter, namely the constant RS , which is called the
Schwarzschild radius. To fix this constant in terms of a physical parameter, recall that
in the weak field limit (i.e., far away from the source), the tt-component of the spacetime
metric sourced by a mass M is given by

gtt = �

✓
1�

2GM

r

◆
. (6.30)

The metric (6.29) should reduce to the weak field case when r � RS , but for the tt-
component to agree with (6.30) we need to identify

RS = 2GM .

We can now write down the final form of a static, spherically symmetric spacetime metric

ds2 = �

✓
1�

2GM

r

◆
dt2 +

✓
1�

2GM

r

◆�1

dr2 + r2
�
d✓2 + sin2 ✓ d�2

�
. (6.31)

This line element is known as the Schwarzschild metric, and it depends on a single
parameter, namely M . This parameter can be interpreted as the mass of the spacetime.
Note that as M ! 0, we recover Minkowski space, as expected. Note also that as
r ! 1, the metric (6.31) becomes more like Minkowski space; this property is known as
asymptotic flatness.

Remark 1. This solution demonstrates how the presence of mass curves flat spacetime.

Remark 2. The solution only applies to the exterior of a star, where there is vacuum.
We will see shortly that, in the absence of matter, this solution describes a black hole.

Remark 3. The Birkho↵ Theorem: a spherically symmetric solution in vacuum is
necessarily static. That is, there is no time dependence is spherically symmetric solutions.
Therefore, the assumption of staticity is not necessary.

Singularities

We see from (6.31) that the some of the metric coe�cients become infinite or zero at
r = 0 and r = 2GM , which suggests that something may be going wrong there. The
metric coe�cients are of course coordinate dependent; hence, it is entirely possible that
the apparent problems at those values of the radial coordinate r are simply coordinate
singularities that result in a breakdown of the coordinates rather than a problem with
the spacetime manifold itself. For instance, this is precisely what happens at the origin
of polar coordinates in flat space, where the metric ds2 = dr2+r2d✓2 becomes degenerate
and g✓✓ blows up at r = 0. Of course, we know that there is nothing wrong with flat space
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at r = 0: this point is equivalent to any other point of the manifold, and by changing to
Cartesian coordinates we see that both the metric ds2 = dx2 + dy2 and its inverse are
perfectly well-behaved at x = y = 0 (r = 0).

Therefore, in GR we need to assess singularities in a coordinate independent way.
In general, this is di�cult but for our present purposes we will identify singularities as
places where the curvature of spacetime becomes infinite. The curvature is measured
by the Riemann tensor, so to say that the curvature become infinite one cannot simply
use the components of this tensor since they are coordinate-dependent. However, from
the curvature one can construct scalars and, since the latter are coordinate independent,
they provide a meaningful way to assess when the curvature becomes infinite. Scalars
involving the Ricci scalar R or the Ricci tensor, e.g., RabRab, are not useful since they are
fixed by the Einstein equations and, in the vacuum case, they trivially vanish. On the
other hand, scalar quantities such as RabcdRabcd or RabcdRcdefR ab

ef
contain information

about the curvature of the spacetime which is not determined by the Einstein equations
and hence we can use them to detect physical singularities. If any of these scalars (but
not necessarily all of them) blows up as we approach a certain point on the manifold, we
regard that point as a singularity of the curvature. We should also check that this point
is not infinitely far away in physical distance, that is, that it can be reached by observers
or light travelling a finite distance along a curve.

Therefore, we have a su�cient condition for a point to be considered a singularity,
but it is not a necessary condition. For the Schwarzschild metric (6.31), we find that

RabcdR
abcd =

48G2M2

r6
. (6.32)

This scalar of the curvature, known as the Kretschmann scalar, blows up at r = 0,
which is su�cient to convince us that r = 0 is a true singularity in the manifold. The
other potentially troublesome point is r = 2GM , the Schwarzschild radius. We see
that the Kretschmann scalar (6.32) (and in fact any other curvature scalar) is perfectly
well-behaved there. This suggests that the singularity at r = 2GM may just be a
coordinate singularity and that the spacetime metric may be perfectly smooth there in
more appropriate coordinates. We will see that this is indeed the case and that it is
possible to find coordinates such that the Schwarzschild metric is smooth at r = 2GM ;
as we shall see, this surface corresponds to the event horizon of a black hole.

In the case of the Sun, it is a body that extends to a radius of R� = 106GM�.
Therefore, the surface r = 2GM� is far inside the Sun and hence the Schwarzschild
metric does not apply there. On the other hand, there are compact objects for which the
Schwarzschild metric is valid everywhere; as we will see, these objects are in fact black
holes.

Remark 4. Uniqueness Theorem (Israel ’67): The Schwarzschild metric (6.31) is the
unique static, topologically spherical, asymptotically flat black hole solution of the Ein-
stein vacuum equations.

6.4 Geodesics of the Schwarzschild geometry

The classical experimental tests of General Relativity are based on the Schwarzschild
solution. These are based on the comparison of the trajectories of freely falling particles
and light rays in gravitational field of a central body with their counterparts in New-
tonian theory. Therefore, we have to consider geodesics, both timelike and null, in the
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