WEEK 8

- Symmetries of the Riemann tensor Consider

$$
\begin{aligned}
R_{a b c d} & =g_{a c} R_{b c d}^{e}= \\
& =g_{a c}\left(\partial_{c} \Gamma_{b d}^{e}-\partial_{d} \Gamma_{b c}^{e}\right)+\Gamma_{a e c} \Gamma_{b d}^{e}-\Gamma_{a e d} \Gamma_{b c}^{e}
\end{aligned}
$$

where $\Gamma_{a b d}=g_{a g} \Gamma_{b d}=\frac{1}{2}\left(\partial_{b} g_{d a}+\partial_{d} g_{b a}-\partial_{a} g_{b d}\right)$
Since $R_{\text {abed }}$ is a tension, it has the same symmetries in all coordinate panes. Consider a locally incutial frame, ie., $g_{\hat{a} \hat{b}}=\operatorname{ching}(-1,1 \ldots 1)$ and $\left.\partial_{\hat{\imath}} g_{\hat{a}} \hat{b}\right|_{p}=0 \Rightarrow \Gamma^{\hat{a}} \hat{b}_{\hat{\imath}}=0$,

$$
\begin{aligned}
\Rightarrow R_{\hat{a} \hat{b} \hat{\imath}} & =g_{\hat{a}} \hat{\jmath}\left(\partial_{\hat{c}} \Gamma \hat{j}_{\hat{b} \hat{\jmath}}-\partial_{\hat{d}} \Gamma \hat{j}_{b \hat{c}}\right) \\
& =\frac{1}{2}\left(\partial_{\hat{b}} \partial_{\hat{\imath}} g_{\hat{a} \hat{d}}+\partial_{\hat{a}} \partial_{\hat{a}} g_{\hat{b} \hat{\imath}}-\partial_{\hat{a}} \partial_{i} g_{\hat{b} \hat{\jmath}}-\partial_{\hat{b}} \partial_{\hat{d}} g_{\hat{a} \hat{c}}\right)
\end{aligned}
$$

We can now easily read off the symmetries:

$$
\begin{aligned}
& R_{a b c d}=-R_{b a c d}, R_{a b c d}=-R_{a b d c}, R_{a b c d}=R_{c d a b} \\
& R_{a b c d}+R_{a d b c}+R_{a c d b}=R_{a[d b c]}=0
\end{aligned}
$$

(1st Bianchi identity)
\Rightarrow In Ad, Rabid has 20 independent compronentós

- Biandri identity

Recall that in a locally inertial farce,

$$
\begin{aligned}
& R_{\hat{\imath} \hat{d} \hat{a} \hat{b}}=\frac{1}{2}\left(\partial_{\hat{a}} \partial_{\hat{\lambda}} g_{\hat{i} \hat{b}}-\partial_{\hat{i} \hat{l}_{\hat{i}}} g_{\hat{b} \hat{\imath}}-\partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{i} \hat{a}}+\partial_{\hat{b}} \partial_{\imath} g_{\hat{a} \hat{d}}\right) \\
& \rightarrow \partial_{\hat{i}} R_{\hat{\imath} \hat{d} \hat{\imath} \hat{b}}=\frac{1}{2} \partial_{\hat{\imath}}\left(\partial_{\hat{\imath}} \partial_{\hat{\lambda}} g_{\hat{\imath} \hat{b}}-\partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{\lambda} \hat{l}}-\partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{a} \hat{a}}+\partial_{\hat{b}} \partial_{i} g_{\hat{a} \hat{d}}\right)
\end{aligned}
$$

Now consider the sum of the cychi permutations of the first three inches:

$$
\begin{aligned}
& \partial_{\hat{e}} R_{\hat{\imath} \hat{\lambda} \hat{a} \hat{b}}+\partial_{\hat{c}} R_{\hat{d} \hat{c} \hat{a} \hat{b}}+\partial_{\hat{d}} R_{\hat{\imath} \hat{\imath} \hat{a} \hat{b}}= \\
& =\frac{1}{2}\left(\partial_{\hat{e}} \partial_{\hat{a}} \partial_{\hat{d}} g_{\hat{i}} \hat{b}-\partial_{\hat{e}} \partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{d}} \hat{d}-\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{d}} g_{\hat{i} \hat{a}}+\partial_{\hat{e}} \partial_{\hat{i}} \partial_{i} g_{\hat{a} \hat{d}}\right. \\
& +\partial_{\hat{\imath}} \partial_{\hat{\imath}} \partial_{\hat{\imath}} g_{\hat{d} \hat{b}}-\partial_{\hat{i}} \partial_{\hat{c}} \partial_{\hat{\alpha}} g_{\hat{\imath}}-\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{\imath}} g_{\lambda \hat{\imath}}+\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{i} \hat{e}} \\
& \left.+\partial_{\hat{d}} \partial_{\hat{2}} \partial_{\hat{\imath}} g_{\hat{i} \hat{b}}-\partial_{\hat{d}} \partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{b}}^{\hat{c}}-\partial_{\hat{d}} \partial_{\hat{b}} \partial_{\hat{\imath}} g_{\hat{i} \hat{a}}+\partial_{\hat{d}} \partial_{\hat{b}} \partial_{\hat{e}} g_{\hat{a} \hat{\imath}}\right) \\
& =0
\end{aligned}
$$

This is a tensor equation and hence it should be true in my coonchinate system:

$$
\nabla_{e} R_{c d a b}+\nabla_{d} R_{e c a b}+\nabla_{c} R_{d e a b}=\nabla_{[e} R_{c d] a b}=0
$$

\rightarrow and Biancis identity

The Ricci tensor

$$
R_{a b}=g^{c d} R_{c a d b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \Gamma_{c b}^{c}+\Gamma_{a b}^{d} \Gamma_{c d}^{c}-\Gamma_{c a}^{d} \Gamma_{d b}^{c}
$$

$R_{m k}: R_{a b}=R_{b a}$
Note that $\Gamma_{a b}^{a}=\partial_{b} \ln \sqrt{|g|}$ whee $g=\operatorname{det} g_{a b}$. Then

$$
R_{a b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \partial_{b} \ln \sqrt{|g|}+\Gamma_{a b}^{d} \partial_{d} \ln \sqrt{|g|}-\Gamma_{c a}^{d} \Gamma_{d b}^{c}
$$

The Rici Scalar: $R=g^{a b} R_{a b}=g^{a c} g^{b d} R_{a b c d}$
The Einstein tensor: $G_{a b}=R_{a b}-\frac{1}{2} R g_{a b}$

$$
\nabla^{a} G_{a b}=0
$$

Proof: Contract twice the 2nd Bianchi identity

$$
\begin{aligned}
0 & =g^{b l} g^{a e}\left(\nabla_{c} R_{c d_{a b}}+\nabla_{c} R_{d e a b}+\nabla_{d} R_{e c a b}\right) \\
& =\nabla^{a} R_{c a}+\nabla_{c} R+\nabla^{b} R_{c b} \\
& =2\left(\nabla^{a} R_{a c}+\frac{1}{2} \nabla_{c} R\right)=2 \nabla^{a} G_{a c}
\end{aligned}
$$

\rightarrow The fact that $G_{a b}$ is chivagance flue is a geometric pouty!

- The Way tensor

The Recci tenser and the Rice scalar contain all the information about the contractions of the Riemann tasses. The Weal tensor is the trace-fee part of the Riemann:

$$
\begin{aligned}
& \begin{aligned}
C_{a b c d}= & R_{a b c d} \\
& -\frac{2}{n-2}\left(g_{a[c} R_{d] b}-g_{l[c} R_{d] a}\right) \\
& +\frac{2}{(n-2)(n-1)} R g_{a[c} g_{d] b}
\end{aligned} \\
& C_{\text {ac }}=0
\end{aligned}
$$

- The Weyl tensor has the same symmetries as the Riemann:

$$
C_{a b c d}=C_{[a b][c d]}, C_{a b c d}=C_{c d a b}, C_{a[b c d]}=0
$$

- The Wage termor is invariant under conformal transformations of the metre: $g_{a b} \rightarrow \Omega(x)^{2} g_{a b}$
general relativity
- Towards the Einstein equations

Recall the Equivence Principle: in gravitational fields, thee exist inertial farms in which Spacial Relativity applies. The equation of motion of a fra particle in such frames is:

$$
\frac{d^{2} \times a}{d \tau^{2}}=0
$$

Relative to an accelerating fame $x^{1 a}=x^{\prime a}\left(x^{b}\right)$

$$
\begin{aligned}
& \frac{d x^{a}}{d \tau}=\frac{\partial x^{a}}{\partial x^{\prime b}} \frac{d x^{\prime b}}{d \tau} \\
& \frac{d^{2} x^{a}}{d \tau^{2}}=\frac{\partial x^{a}}{\partial x^{\prime b}} \frac{d^{2} x^{\prime b}}{d \tau^{2}}+\frac{\partial^{2} x^{a}}{\partial x^{1 c} \partial x^{b}} \frac{d x^{\prime c}}{d \tau} \frac{d x^{1 b}}{d \tau}=0 \\
& \frac{\partial x^{\prime c}}{\partial x^{a}} \Rightarrow \frac{d^{2} x^{a}}{d \tau^{2}}+\frac{\partial x^{\prime a}}{\partial x^{d}} \frac{\partial^{2} x^{d}}{\partial x^{1 b} \partial x^{\prime b}} \frac{d x^{\prime b}}{d \tau} \frac{d x^{\prime c}}{d \tau}= \\
&=\frac{d^{2} x^{\prime a}}{d \tau^{2}}+\gamma^{a} b c \frac{d x^{x^{b}}}{d \tau} \frac{d x^{\prime a}}{d \tau}=0
\end{aligned}
$$

$Y_{b c}$: "fictitious" fore e terms that anise due to the mom-inutial native of fame
Equivalma Pol: locally gravity = acceleration
and acceleration gives vise to nom-incutial famines GR: gravity and acceleration are clescibed by appropriate Y^{\prime} 's.

The problem with the equation of motion for a fee particle above is that it's not tensonial:

$$
\frac{d^{2} x^{a}}{d \tau^{2}}=\frac{d x^{b}}{d \tau} \partial_{b}\left(\frac{d x^{a}}{d \tau}\right)
$$

To get a tonsorial equation we replace $\partial_{b} \rightarrow \nabla_{b}$:

$$
\begin{aligned}
\rightarrow \frac{d x^{b}}{d \tau} \nabla_{b}\left(\frac{d x^{a}}{d \tau}\right) & =\frac{d x^{b}}{d \tau} \partial_{b}\left(\frac{d x^{a}}{d \tau}\right)+\Gamma_{b c}^{a} \frac{d x^{b}}{d \tau} \frac{d x^{c}}{d \tau}= \\
& =\frac{d^{2} x^{a}}{d \tau^{2}}+\Gamma^{a} b c \frac{d x^{b}}{d \tau} \frac{d x^{c}}{d \tau}=0
\end{aligned}
$$

\Rightarrow The geodesic equation
Conclusion: The geodesic equation describes the motion of test particles in gravitational fields
Newtonian limit:

- Small velocities compared to the speed of light
- Weak gravitational fields
- Static gravitational field

If τ is the affine parameter along the geodsic, moving slowly means

$$
\begin{gathered}
\frac{d x^{i}}{d \tau} \ll \frac{d t}{d \tau} \\
\Rightarrow \frac{d^{2} x^{a}}{d \tau^{2}}+\Gamma^{a} b c \frac{d x^{b}}{d \tau} \frac{d x^{c}}{d \tau} \approx \frac{d^{2} x^{a}}{d \tau^{2}}+\Gamma_{t t}^{a}\left(\frac{d t}{d \tau}\right)^{2}=0
\end{gathered}
$$

- Static gravitational field: $\partial_{t} g_{a b}=0$

$$
\begin{aligned}
\Rightarrow \Gamma_{t t}^{a} & =\frac{1}{2} g^{a b}\left(\partial_{t} g_{t b}+\partial_{t} g_{t b}-\partial_{b} g_{t t}\right)=-\frac{1}{2} g^{a b} \partial_{b} g_{t t} \\
& =-\frac{1}{2} g^{a i} \partial_{i} g_{t t}
\end{aligned}
$$

- Weak gravitational field: $g_{a b}=\eta_{a b}+h_{a b},\left|h_{a b}\right| \ll 1$

$$
\Rightarrow \text { Since } g^{a c} g_{c b}=\delta_{b}^{a} \rightarrow g^{a b}=\eta^{a b}-h^{a b}+O\left(h^{2}\right)
$$

whee e $h^{a b}=\eta^{a c} \eta^{b d} h_{c d}$

$$
\Rightarrow \quad \Gamma_{t t}^{a}=-\frac{1}{2} \delta^{a i} \partial_{i} h_{t t}
$$

Thenfore, in this limit the geodesic equation becomes:

$$
\begin{aligned}
& \frac{d^{2} t}{d \tau^{2}}=0 \Rightarrow \frac{d t}{d \tau}=\text { constant } \\
& \frac{d^{2} x^{i}}{d \tau^{2}}=\frac{1}{2}\left(\partial_{i} h_{t t}\right)\left(\frac{d t}{d \tau}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } \frac{d x^{i}}{d \tau}=\frac{d x^{i}}{d t} \frac{d t}{d \tau} \Rightarrow \frac{d^{2} x^{i}}{d \tau^{2}}=\frac{d^{2} x^{i}}{d t^{2}}\left(\frac{d t}{d \tau}\right)^{2}+\frac{d x^{i}}{d t} \frac{d^{2} t^{0}}{d \tau^{2}} \\
& \Rightarrow \frac{d^{2} x^{i}}{d \tau^{2}}=\frac{d^{2} x^{i}}{d t^{2}}\left(\frac{d t}{d t}\right)^{2}=\frac{1}{2}\left(\partial_{i} h_{t t}\right)\left(\frac{d t}{d \tau}\right)^{2} \\
& \Rightarrow \frac{d^{2} x^{i}}{d t^{2}}=\frac{1}{2}\left(\partial_{i} h_{t t}\right)
\end{aligned}
$$

The Newtonian equation for a particle moving in a gravitation field is

$$
\frac{d^{2} x^{i}}{d t^{2}}=-\partial_{i} \phi \quad \text { with } \quad \phi=-\frac{G M}{r}
$$

ф: gravitational potential for a central body of mass M at a chistance r from the particle
comparing we find: $h_{t t}=-2 \phi+$ constant at large distances from the mas $M, \phi \rightarrow 0$ and gravity should become negligible: $g_{a b} \rightarrow \eta_{a b}$

$$
\begin{array}{ll}
\Rightarrow & h_{t t}=-2 \phi \\
\Rightarrow & g_{t t}=-(1+2 \phi)
\end{array}
$$

$\phi @$ the surface of the Earth $\sim 10^{-9}$
$\operatorname{sun} \sim 10^{-6}$
ϕ
white dwarf ~ 10^{-4}
ϕ " " neutron stan $\sim 10^{-2}$
ф" " black hole ~ 1
To motivate the equation for the metric recall that in Newtonian gravity ϕ is given by

$$
\nabla^{2} \phi=4 \pi G \rho \quad \rho: \text { man density }
$$

\rightarrow The relativistic malogue of this equation should be tensonial and involve and derivatives of the metric sine $g_{a b} \sim \phi$

Consider the motion of two neighbouring particles located at $x^{i}(t)$ and $x^{i}(t)+\xi^{i}(t)$ in a Newtonian gravitation field ϕ :

$$
\begin{aligned}
& \frac{d^{2} x^{i}}{d t^{2}}=-\partial_{i} \phi(x) \\
& \frac{d^{2}}{d t^{2}}\left(x^{i}(t)+z^{i}(t)\right)=\frac{d^{2} x^{i}}{d t^{2}}+\frac{d^{2} z^{i}}{d t^{2}}=-\partial_{i} \phi(x+z) \approx-\partial_{i} \phi-z^{j} \partial_{i} \partial_{j} \phi \\
&+O\left(z^{2}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{d^{2} 3^{i}}{d t^{2}}=-3^{j} \partial_{i} \partial_{j} \phi
$$

Compare with the geodesic deviation equation:

$$
\begin{aligned}
& \nabla_{v} \nabla_{v} \xi^{a} \\
& \Rightarrow \quad R_{c d b}^{a} V^{c} V^{d} \xi^{b} \\
& \Rightarrow \quad \partial_{i} \partial_{j} \phi \sim R^{a}{ }_{c d b}
\end{aligned}
$$

This identification should make char the relation between gravity anal geometry.

- Principles of Geneal Relativity

1) Equivalence pinaple: in small enough regions of spacetime, the Laws of Physics reduce to those of special Relativity. It is impossible to detect a gravitational field by means of local orperiments
2) Geneal Covariomce: The Laws of Nature should have the same mathematical form in any reference frame \rightarrow tonsorial equations
3) Minimal coupling: the coupling to gravity is done by replacing $\partial \rightarrow \nabla, \eta_{a b} \rightarrow g_{a b}$

Sample: perfect fluid in Special Relativity

$$
\begin{aligned}
& T^{a b}=(\rho+p) v^{\wedge} v^{b}-p \eta^{a b} \\
& \partial_{a} T^{a b}=0
\end{aligned}
$$

Pufect fluid in a gravitational field:

$$
\begin{aligned}
& T^{a b}=(\rho+p) V^{a} V^{b}-p g^{a b} \\
& \nabla_{a} T^{a b}=0
\end{aligned}
$$

4) Conespondance pinsaple: GR should reduce to SR in absence of gravity and should agree with the Newtonian theory of gravity in the case of weak gravitahonal felts and in the non-nelativistic limit (small velocities compared to c)

- Einstein equations in vacuum

Equation for the Newtonian potential in absence of matter somas:

$$
\phi \leftrightarrow g_{a b} \quad \nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}=0
$$

By analogy the equations for the gravitational fill should invobe a geornetric object build from the

Riemann tanson (\rightarrow and derivatives of gab) and have the same number of components as gab One guess:

$$
R_{a b}=0
$$

\rightarrow Cimitein equations in vacuum
\rightarrow Non-linean and ordn PDEs for gab
Rok: For Minkowski space in Contusion coordinates,

$$
\begin{aligned}
& d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2} \\
& \rightarrow g_{a b}=\operatorname{ding}(-1,1,1,1) \Rightarrow \Gamma_{b c}^{a}=0 \quad \partial_{d} \Gamma_{b c}^{a}=0 \\
& \Rightarrow R_{a b}=0
\end{aligned}
$$

Rok: One can add a cosmological constant to the Einstein vacuum equations:

$$
R_{a b}+\Lambda g_{a b}=0
$$

- The full Einstein equations of GR

Matte in relativity is described by a $(0,2)$ tensor, Tab, the stress-enagy tanson that describes the chistribution of matta/enargy.

One would be tempted to gennabise the Einstein equation as

$$
R_{a b}=k T_{a b}
$$

for some coupling constant k that determines the strength of gravity. However, this equation is inconsistent since mass-energy is consewud $\nabla^{a} T_{a b}=0$ but $\nabla^{a} R_{a b} \neq 0$
\rightarrow both sides of the Einstion equation must be covariantly consewal, thaefore the only $(0,2)$ tenser constructed from the Rice that has tors proputy is the Einstein tensor:

$$
G_{a b}=k T_{a b}
$$

$\sin u \nabla^{a} G_{a b}=0$ follows from the Bianchi id. Note that $\nabla^{a} g_{a b}=0^{\prime}$ (from metric compatibility) so we can generalise the equation above as

$$
G_{a b}+\Lambda g_{a b}=k T_{a b}
$$

with $K=8 \pi G$ to repoiluce the Newtonian limit.

- The Schwarzschild solution
\rightarrow Unique spherically symmetric solution of the Einstein equations in vacuum:

$$
R_{a b}=0
$$

Staticity: the arsis a Killing vector field such that fan away from any sources uelnces to ∂_{t}, which is the comomical timelike Killing valio field in Minkowski space. Funthamore, the metric must be invariant under $t \rightarrow-t$.

- Spherical symmetry : one can find coondimatos such that the bine clement has an cepplicet sound sphere e: $d \Omega_{(2)}^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$

The most geneal lime clement compatible with those symmetries is:

$$
d s^{2}=-e^{2 A(r)} d t^{2}+e^{2 B(r)} d r^{2}+r^{2} e^{2 C(r)}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

We can further simplify this metric by using the feeilom to redefine the radial coordinate:

$$
\begin{aligned}
& \bar{r}=r e^{c(r)} \rightarrow d \bar{r}=e^{c(r)}\left(1+r \frac{d c}{d r}\right) d r \\
\Rightarrow & d s^{2}=-e^{2 A(r)} d t^{2}+\left(1+r C^{\prime}\right)^{-2} e^{2(B-c)} d \bar{r}^{2}+\bar{r}^{2} d \Omega_{(2)}^{2}
\end{aligned}
$$

where now $r=r(\bar{r})$. Relabelling

$$
\begin{align*}
& \vec{r} \rightarrow r, \quad\left(1+r c^{1}\right)^{2(B(r)-C(r)} \rightarrow e^{2 B(r)} \\
\Rightarrow & d s^{2}=-e^{2 A(r)} d t^{2}+e^{2 B(r)} d r^{2}+r^{2} d \Omega_{(2)}^{2} \tag{*}
\end{align*}
$$

That's the most geneal static and spherically symmetric spacetime.
Now we sober the Ensstem vacuum eqs for (*)

$$
R_{a b}=0
$$

- Step 1 : compute the Chnistoffels
\rightarrow the the Coule-Lagnange eqs:

$$
\begin{aligned}
& \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0 \Leftrightarrow \ddot{x}^{a}+\Gamma^{a} b c \dot{x}^{b} \dot{x}^{c}=0 \\
& L=-e^{2 A(r)} \dot{t}^{2}+e^{2 g(r)} \dot{r}^{2}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
t): & \frac{\partial L}{\partial t}=0 \\
& \frac{\partial L}{\partial \dot{t}}=-2 e^{2 A} \dot{t} ; \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{t}}\right)=-2 e^{2 A}\left(\ddot{t}+2 A^{\prime} \dot{r} \dot{t}\right) \\
\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{t}}\right)-\frac{\partial L}{\partial t}=-2 e^{2 A}\left(\ddot{t}+2 A^{\prime} \dot{r} \dot{t}\right)=0 \\
\Rightarrow & \ddot{t}+2 A^{\prime} \dot{r} \dot{t}=0 \Rightarrow \Gamma_{t r}^{t}=\Gamma_{r t}^{t}=A^{\prime}
\end{array}
$$

$$
\text { r) } \begin{aligned}
& \frac{\partial L}{\partial r}=2\left[-e^{2 A} A^{\prime} \dot{t}^{2}+e^{2 B} B^{\prime} \dot{r}^{2}+r\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)\right] \\
& \frac{\partial L}{\partial \dot{r}}=2 e^{2 B} \dot{r} ; \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{r}}\right)=2 e^{2 B}\left(\ddot{r}+2 B^{\prime} \dot{r}^{2}\right) \\
& 0= \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=2 e^{2 B}\left(\ddot{r}+2 B^{\prime} \dot{r}^{2}\right) \\
&-2\left[-e^{2 A} A^{\prime} \dot{t}^{2}+e^{2 B} B^{\prime} \dot{r}^{2}+r\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)\right] \\
& \Rightarrow \ddot{r}+e^{2(A-B)} A^{\prime} \dot{t}^{2}+B^{\prime} \dot{r}^{2}-r e^{-2 B}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)=0 \\
& \Rightarrow \Gamma_{t t}^{r}=e^{2(A-B)} A^{\prime} ; \Gamma_{r r}^{r}=B^{\prime} \\
& \Gamma_{\theta \theta}^{r}=-r e^{-2 B} ; \Gamma_{\phi \phi}^{r}=-r \sin ^{2} \theta e^{-2 B}
\end{aligned}
$$

Similanly we compute:

$$
\begin{aligned}
& \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r} ; \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta \\
& \Gamma_{r \phi}^{\phi_{r}}=\Gamma_{\phi r}^{\phi}=\frac{1}{r} ; \Gamma_{\theta \phi}^{\phi}=\cot \theta
\end{aligned}
$$

Step 2: compute the Ricci tensor

$$
\begin{aligned}
& R_{a b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \partial_{b} \ln \sqrt{|g|}+\Gamma_{a b}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{a d}^{c} \Gamma_{b c}^{d} \\
& \operatorname{det} g=-e^{2(A+B)} r^{4} \sin ^{2} \theta \rightarrow \sqrt{|g|}=e^{A+B} r^{2} \sin \theta \\
& \rightarrow \ln \sqrt{|g|}=A+B+2 \ln r+\ln \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
R_{t t}= & \partial_{c} \Gamma_{t t}^{c}-\partial^{2} \ln \sqrt{| | g \mid}+\Gamma_{t t}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{t d}^{c} \Gamma_{t c}^{d} \\
= & \partial_{r} \Gamma_{t t}^{r}+\Gamma_{t t}^{r} \partial_{r} \ln \sqrt{|g|}-\Gamma_{t r}^{t} \Gamma_{t t}^{r}-\Gamma_{t t}^{r} \Gamma_{t r}^{t} \\
= & \frac{d}{d r}\left(e^{2(A-B)} A^{\prime}\right)+e^{2(A-B)} A^{\prime}\left(A^{\prime}+B^{\prime}+\frac{2}{r}\right) \\
& -2\left(A^{\prime}\right)^{2} e^{2(A-B)} \\
= & e^{2(A-B)}\left[A^{\prime \prime}+A^{\prime}\left(A^{\prime}-B^{\prime}+\frac{2}{r}\right)\right]
\end{aligned}
$$

$$
\text { - } \begin{aligned}
R_{r r}= & \partial_{c} \Gamma_{r r}^{c}-\partial_{r}^{2} \ln \sqrt{|g|}+\Gamma_{r r}^{c} \partial_{c} \ln \sqrt{|g|}-\Gamma_{r d}^{c} \Gamma_{r c}^{d} \\
= & \partial_{r} \Gamma_{r r}^{r}+\partial_{r}^{2} \ln \sqrt{|g|}+\Gamma_{r r}^{r} \partial_{r} \ln \sqrt{|g|} \\
& -\Gamma_{r t}^{t} \Gamma_{r t}^{t}-\Gamma_{r r}^{r} \Gamma_{r r}^{r}-\Gamma_{r \theta}^{\theta} \Gamma_{r \theta}^{\theta}-\Gamma_{r \phi}^{\phi} \Gamma_{r \phi}^{\phi} \\
= & B^{\prime \prime}-\left(A^{\prime \prime}+B^{\prime \prime}-\frac{2}{r^{2}}\right)+B^{\prime}\left(A^{\prime}+B^{\prime}+\frac{2}{r}\right) \\
& -\left(A^{\prime}\right)^{2}-\left(B^{\prime}\right)^{2}-\frac{2}{r^{2}} \\
= & -A^{\prime \prime}-\left(A^{\prime}\right)^{2}+A^{\prime} B^{\prime}+\frac{2}{r} B^{\prime}
\end{aligned}
$$

Similarly we compute

$$
R_{\theta \theta}=e^{-2 B}\left[r\left(B^{\prime}-A^{\prime}\right)-1\right]+1
$$

$R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta} \quad$ by spherical symmenctry.
Step 3: Solve the Einstein equations $R_{a b}=0$

$$
\begin{aligned}
& R_{t t}=e^{2(A-B)}\left(A^{\prime \prime}+A^{\prime 2}-A^{\prime} B^{\prime}+\frac{2}{r} A^{\prime}\right) \\
& R_{r r}=-A^{\prime \prime}-A^{\prime 2}+A^{\prime} B^{\prime}+\frac{2}{r} B^{\prime} \\
& R_{\theta \theta}=e^{-2 B}\left[r\left(B^{\prime}-A^{\prime}\right)-1\right]+1
\end{aligned}
$$

Since all components of Rice have to ramish independently we can consider linear combinations:

$$
\begin{aligned}
& 0=e^{2(B-A)} R_{t t}+R_{r r}=\frac{2}{r}\left(A^{\prime}+B^{\prime}\right) \\
& \Rightarrow A(r)=-B(r)+c, C=\text { cont }
\end{aligned}
$$

We can set $c=0$ by rescaling $t \rightarrow e^{-c} t$ so

$$
\begin{aligned}
& A(r)=-B(r) \\
0= & R_{\theta \theta}=e^{2 A(r)}\left(-2 r A^{\prime}-1\right)+1 \\
\Rightarrow & e^{2 A(r)}\left(2 r A^{\prime}+1\right)=1 \\
\Rightarrow & \frac{d}{d r}\left(r e^{2 A(r)}\right)=1 \Rightarrow e^{2 A(r)}=1-\frac{R_{S}}{r}
\end{aligned}
$$

Rs: constant

With those susults the line element becomes:

$$
d s^{2}=-\left(1-\frac{R_{s}}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{R_{s}}{r}}+r^{2} d \Omega_{(2)}^{2}
$$

We can fix Rs ty requiring that in the weak field regime, $r \gg R_{s}$, we recover the pervious results:

$$
\begin{aligned}
& g_{t t}=-\left(1-\frac{R_{s}}{r}\right)=-(1+2 \phi)=-\left(1-\frac{2 G M}{r}\right) \\
& \Rightarrow R_{s}=2 G M
\end{aligned}
$$

We can finally write down the final form of a static, spherically symmetric vacuum spacetime:

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{r}}+r^{2} d \Omega_{(2)}^{2}
$$

\rightarrow Schuarsschild metric
M: mass of the spaccione. For $M \rightarrow 0$ we re cove Minkewstei space

- This spacetime describes the exterior of a stan. It all describes a blade hole
- Birkhoff's Thm: a spherically symmetric solution of the Einstein eqs in vacuum is meassarily static.

